Digital Potentiometers

Digital potentiometers are three-terminal devices, two fixed end terminals and one wiper terminal which is used to vary the output voltage.  Digital potentiometers have various applications, including calibrating a system, adjusting offset voltage, tuning filters, controlling screen brightness, and controlling sound volume.

However mechanical potentiometers suffer from some serious disadvantages which make it unsuitable for applications where precision is required. Size, wiper contamination, mechanical wear, resistance drift, sensitivity to vibration, humidity, etc. are some of the main disadvantages of a mechanical potentiometer. Hence to overcome these drawbacks, digital potentiometers are more common in applications since it provides higher accuracy.

Digital Potentiometer Circuit

The circuit of a digital potentiometer consists of two parts, first the resistive element along with electronic switches and second the control circuit of the wiper. The figure below shows both the part respectively.

The first part is an array of resistors, and each node is connected to a common point W, except the endpoints A and B, via a two-way electronic switch. The terminal W is the wiper terminal. Each of the switches is designed using CMOS technology and only one of the switches out of all is in ON state at any given time of the potentiometer operation.

The switch which is ON determines the potentiometer resistance and the number of switches determines the resolution of the device. Now which switch is to be made ON is controlled by the control circuit. The control circuit consists of an RDAC register which can be written digitally using interface such as SPI, I2C, up/down or can be manually controlled by push buttons or a digital encoder. The diagram above shows that of a push-button controlled digital potentiometer. One button is for “UP” or increasing the resistance and the other for “DOWN” i.e. decreasing the resistance.

Generally, the wiper position is at the middle switch when the digital potentiometer off. After power is switched on, depending upon our requirement we can increase or decrease the resistance by a suitable push-button operation. Besides, advanced digital potentiometers also have an inbuilt onboard memory which can store the last position of the wiper. Now this memory can be of the volatile type or permanent type both, depending upon the application.

For example, in the case of volume control of a device, we expect the device to remember the volume setting we used last even after we switch it on again. Hence a permanent type of memory such as EEPROM is suitable here. On the other hand for systems that recalibrates the output continuously and it is not necessary to restore previous value, a volatile memory is used.

Advantages of Digital Potentiometers

The advantages of digital potentiometers are:

Disadvantages of Digital Potentiometers

The disadvantages of digital potentiometers are: