Changes in Velocity and Pressure
During the passage of the air through the engine, aerodynamic and energy requirements demand changes in its velocity and pressure. For instance: during compression, a rise in the pressure of the air is required and not an increase in its velocity. After the air has been heated and its internal energy increased by combustion, an increase in the velocity of the gases is necessary to force the turbine to rotate. At the propelling nozzle a high exit velocity is required, for it is the change in the momentum of the air that provides the thrust on the aircraft. Local decelerations of airflow are also required, as for instance, in the combustion chambers to provide a low velocity zone for the flame to burn.
These various changes are effected by means of the size and shape of the ducts through which the air passes on its way through the engine. Where a conversion from velocity (kinetic) energy to pressure is required, the passages are divergent in shape. Conversely, where it is required to convert the energy stored in the combustion gases to velocity energy, a convergent passage or nozzle (fig. 2-3) is used. These shapes apply to the gas turbine engine where the airflow velocity is subsonic or sonic, i.e. at the local speed of sound. Where supersonic speeds are encountered, such as in the propelling nozzle of the rocket, athodyd and some jet engines (Part 6), a convergent-divergent nozzle or venturi (fig. 2-4) is used to obtain the maximum conversion of the energy in the combustion gases to kinetic energy.
The design of the passages and nozzles is of great importance, for upon their good design will depend the efficiency with which the energy changes are effected. Any interference with the smooth airflow creates a loss in efficiency and could result in component failure due to vibration caused by eddies or turbulence of the airflow.
Fig. 2-5-1 Airflow systems.
Fig, 2-5-2 Airflow systems.