What is Control Engineering

Control system engineering is the branch of engineering which deals with the principles of control theory, to design a system which gives yields the desired behavior in a controlled manner. Hence, although control engineering is often taught within electrical engineering at university, it is an interdisciplinary topic.

Control system engineers analyze, design, and optimize complex systems which consist of highly integrated coordination of mechanical, electrical, chemical, metallurgical, electronic or pneumatic elements. Thus control engineering deals with a diverse range of dynamic systems which include human and technological interfacing. These systems are broadly referred to as control systems.

 

Control system engineering focuses on the analysis and design of systems to improve the speed of response, accuracy, and stability of the system.

The two methods of control system include classical methods and modern methods. The mathematical model of the system is set up as the first step followed by analysis, designing and testing. Necessary conditions for the stability are checked and finally, optimization follows.

In the classical method, mathematical modeling is usually done in the time domain, frequency domain or complex domain. The step response of a system is mathematically modeled in time domain differential analysis to find its settling time, % overshoot, etc. Laplace transforms are most commonly used in the frequency domain to find the open loop gain, phase margin, bandwidth etc of the system. The concept of the transfer function, Nyquist stability criteria, sampling of data, Nyquist plot, poles and zeros, Bode plots, system delays all come under the umbrella of classical control engineering stream.

 

Modern control engineering deals with Multiple Input Multiple Output (MIMO) systems, State space approach, Eigenvalues, and vectors, etc. Instead of transforming complex ordinary differential equations, modern approach converts higher order equations to first order differential equations and solved by vector method.

Automatic control systems are most commonly used as it does not involve manual control. The controlled variable is measured and compared with a specified value to obtain the desired result. As a result of automated systems for control purposes, the cost of energy or power, as well as the cost of the process, will be reduced increasing its quality and productivity.