Simplex, Half-Duplex, and Full Duplex
These are operational terms, and they will be used throughout this text. Simplex is one-way operation; there is no reply channel provided. Radio and television broadcasting are simplex. Certain types of data circuits might be based on simplex operation. Half-duplex is a two-way service. It is defined as transmission over a circuit capable of transmitting in either direction, but only in one direction at a time. Full duplex or just duplex defines simultaneous two-way independent transmission on a circuit in both directions. All PSTN-type circuits discussed in this text are considered using full-duplex operation unless otherwise specified.
One-Way and Two-Way Circuits
Trunks can be configured for either one-way or two-way7 operation. A third option is a hybrid where one-way circuits predominate and a number of two-way circuits are provided for overflow situations. Figure 1.8a shows two-way trunk operation. In this case, any trunk can be selected for operation in either direction. The incisive reader will observe that there is some fair probability that the same trunk can be selected from either side of the circuit. This is called double seizure. It is highly undesirable. One way to reduce this probability is to use normal trunk numbering (from top down) on one side of the circuit (at exchange A in the figure) and to reverse trunk numbering, from the bottom up at the opposite side of the circuit (exchange B).
Figure 1.8b shows one-way trunk operation. The upper trunk group is assigned for the direction from A to B; the lower trunk group is assigned for the opposite direction, from exchange B to exchange A. Here there is no possibility of double seizure.
Figure 1.8c illustrates a typical hybrid arrangement. The upper trunk group carries traffic from exchange A to exchange B exclusively. The lowest trunk group carries traffic in the opposite direction. The small, middle trunk group contains two-way circuits. Switches are programmed to select from the one-way circuits first, until all these circuits become busy; then they may assign from the two-way circuit pool.
Let us clear up some possible confusion here. Consider the one-way circuit from A to B, for example. In this case, calls originating at exchange A bound for exchange B in Figure 1.8b are assigned to the upper trunk group. Calls originating at exchange B destined for exchange A are assigned from the pool of the lower trunk group. Do not confuse these concepts with two-wire and four-wire operation.