Benefits of GPRS 

Higher Data Rate

 PRS benefits the users in many ways, one of which is higher data rates in turn of shorter access times. In the typical GSM mobile, setup alone is a lengthy process and equally, rates for data permission are restrained to 9.6 kbit/s. The session establishment time offered while GPRS is in practice is lower than one second and ISDN-line data rates are up to many 10 kbit/s.

 Easy Billing

 GPRS packet transmission offers a more user-friendly billing than that offered by circuit switched services. In circuit switched services, billing is based on the duration of the connection. This is unsuitable for applications with bursty traffic. The user must pay for the entire airtime, even for idle periods when no packets are sent (e.g., when the user reads a Web page).

 In contrast to this, with packet switched services, billing can be based on the amount of transmitted data. The advantage for the user is that he or she can be "online" over a long period of time but will be billed based on the transmitted data volume.

 

GPRS Architecture

 GPRS architecture works on the same procedure like GSM network, but, has additional entities that allow packet data transmission. This data network overlaps a second-generation GSM network providing packet data transport at the rates from 9.6 to 171 kbps. Along with the packet data transport the GSM network accommodates multiple users to share the same air interface resources concurrently.

 

Following is the GPRS Architecture diagram:

GPRS attempts to reuse the existing GSM network elements as much as possible, but to effectively build a packet-based mobile cellular network, some new network elements, interfaces, and protocols for handling packet traffic are required.

 

Therefore, GPRS requires modifications to numerous GSM network elements as summarized below:

 

GPRS Mobile Stations

New Mobile Stations (MS) are required to use GPRS services because existing GSM  phones do not handle the enhanced air interface or packet data. A variety of MS can exist,  including a high-speed version of current phones to support high-speed data access, a new  PDA device with an embedded GSM phone, and PC cards for laptop computers. These  mobile stations are backward compatible for making voice calls using GSM. 
PRS Base Station Subsystem

 Each BSC requires the installation of one or more Packet Control Units (PCUs) and a software upgrade. The PCU provides a physical and logical data interface to the Base Station Subsystem (BSS) for packet data traffic. The BTS can also require a software upgrade but typically does not require hardware enhancements.

 When either voice or data traffic is originated at the subscriber mobile, it is transported over the air interface to the BTS, and from the BTS to the BSC in the same way as a standard GSM call. However, at the output of the BSC, the traffic is separated; voice is sent to the Mobile Switching Center (MSC) per standard GSM, and data is sent to a new device called the SGSN via the PCU over a Frame Relay interface.

 GPRS Support Nodes

 Following two new components, called Gateway GPRS Support Nodes (GSNs) and, Serving GPRS Support Node (SGSN) are added:

 Gateway GPRS Support Node (GGSN)

 The Gateway GPRS Support Node acts as an interface and a router to external networks. It contains routing information for GPRS mobiles, which is used to tunnel packets through the IP based internal backbone to the correct Serving GPRS Support Node. The GGSN also collects charging information connected to the use of the external data networks and can act as a packet filter for incoming traffic.

Serving GPRS Support Node (SGSN)

 The Serving GPRS Support Node is responsible for authentication of GPRS mobiles, registration of mobiles in the network, mobility management, and collecting information on charging for the use of the air interface.

 

Internal Backbone

 The internal backbone is an IP based network used to carry packets between different GSNs. Tunnelling is used between SGSNs and GGSNs, so the internal backbone does not need any information about domains outside the GPRS network. Signalling from a GSN to a MSC, HLR or EIR is done using SS7.

 

Routing Area

 GPRS introduces the concept of a Routing Area. This concept is similar to Location Area in GSM, except that it generally contains fewer cells. Because routing areas are smaller than location areas, less radio resources are used while broadcasting a page message.

 GPRS Protocol Stack

 The flow of GPRS protocol stack and end-to-end message from MS to the GGSN is displayed in the below diagram. GTP is the protocol used between the SGSN and GGSN using the Gn interface. This is a Layer 3 tunnelling protocol.

 

The process that takes place in the application looks like a normal IP sub-network for the users both inside and outside the network. The vital thing that needs attention is, the application communicates via standard IP, that is carried through the GPRS network and out through the gateway GPRS. The packets that are mobile between the GGSN and the SGSN use the GPRS tunnelling protocol, this way the IP addresses located on the external side of  the GPRS network do not have deal with the internal backbone. UDP and IP are run by GTP.

 SubNetwork Dependent Convergence Protocol (SNDCP) and Logical Link Control (LLC) combination used in between the SGSN and the MS. The SNDCP flattens data to reduce the load on the radio channel. A safe logical link by encrypting packets is provided by LLC and the same LLC link is used as long as a mobile is under a single SGSN.

 In case, the mobile moves to a new routing area that lies under a different SGSN; then, the old LLC link is removed and a new link is established with the new Serving GSN X.25. Services are provided by running X.25 on top of TCP/IP in the internal backbone.