Structured Programming

In the process of coding, the lines of code keep multiplying, thus, size of the software increases. Gradually, it becomes next to impossible to remember the flow of program. If one forgets how software and its underlying programs, files, procedures are constructed it then becomes very difficult to share, debug and modify the program. The solution to this is structured programming. It encourages the developer to use subroutines and loops instead of using simple jumps in the code, thereby bringing clarity in the code and improving its efficiency Structured programming also helps programmer to reduce coding time and organize code properly.

Structured programming states how the program shall be coded. Structured programming uses three main concepts:

      Top-down analysis - A software is always made to perform some rational work. This rational work is known as problem in the software parlance. Thus it is very important that we understand how to solve the problem. Under top-down analysis, the problem is broken down into small pieces where each one has some significance. Each problem is individually solved and steps are clearly stated about how to solve the problem.

      Modular Programming - While programming, the code is broken down into smaller group of instructions. These groups are known as modules, subprograms or subroutines. Modular programming based on the understanding of top-down analysis. It discourages jumps using ‘goto’ statements in the program, which often makes the program flow non-traceable. Jumps are prohibited and modular format is encouraged in structured programming.

      Structured Coding - In reference with top-down analysis, structured coding sub-divides the modules into further smaller units of code in the order of their execution. Structured programming uses control structure, which controls the flow of the program, whereas structured coding uses control structure to organize its instructions in definable patterns.