What is mega-science?

Mega-science projects are high-budget global experiments that involve thousands of scientists and make fundamental breakthroughs in science. These projects attempt to answer some of the most basic yet inexplicable questions of our universe, such as how the universe was born, what prompted the formation of stars and galaxies, and if there is life outside of earth.

Vigyan Samagam is showcasing Indian science community’s participation in seven such projects: European Organisation for Nuclear Research (CERN)’s Large Hadron Collider (LHC); Facility for Antiproton and Ion Research (FAIR); India-based Neutrino Observatory (INO); International Thermonuclear Experimental Reactor (ITER); Laser Interferometer Gravitational-Wave Observatory’ (LIGO); Thirty Meter Telescope (TMT) and Square Kilometre Array (SKA).

While each mega-science project at Vigyan Samagam has diverse goals and requires different approaches, together they attempt to unlock one fundamental question — how did the universe burst into existence?

From the story of the Higgs-Boson particle, gravitational waves from mergers of black holes and neutron stars, to the origin of the Universe and the Big Bang theory, the evolution of stars, the Vigyan Samagam exhibition intends to take visitors through the discoveries that have helped humankind understand the universe so far using modern science.

“The exhibition will have theme-based galleries of posters, working models and exhibits, informative audio-visual content and electronic displays and interactive kiosks will be setup for each of the Mega Science Projects,” Arun Srivastava, chief of DAE’s Institutional Collaboration and Program Division, had said in a statement in May.

The statement came ahead of the exhibition’s launch in Mumbai. The event was then held in Bengaluru and Kolkata.

Large Hadron Collider

What we see around us today and the classical laws of physics cannot explain what happened when all the energy and matter of the universe was clumped together in tiny, dense point of singularity. All known laws of physics breakdown at a singularity, making it extremely difficult to understand how matter behaves there. The Large Hadron Collider (LHC) is a fundamental physics experiment that enables microscopic particles to collide at high speeds, and the results observed.

Hadrons are subatomic particles held together by what is known as the ‘strong force’, which is one of the four fundamental forces described in physics (after gravitation, electromagnetism, weak force). When particles are accelerated to high speeds and then allowed to collide, they produce byproducts (which are also subatomic particles).


Students at the Vigyan Samagam in New Delhi

 

Such collisions are recreated in the world’s largest and most powerful accelerator — the LHC. It is a ring-shaped vacuum tube, 27 km in circumference and situated 175 metres beneath the French and Swiss border. It is considered to be the largest machine in the world. It is housed inside an underground tunnel that is lined with superconducting magnets that boosts the energy of colliding particles.

Its construction took ten years and was completed in 2008. Today, over 10,000 scientists from more than a hundred countries work on the accelerator and related research.

The entire vacuum tube sits on sophisticated precision magnetic positioning jacks that were supplied by India. The country has also supplied superconducting magnets for the project. India’s DAE signed a cooperation agreement with CERN in 1991, and in 1996, establishing a protocol for collaboration in the LHC project.