Heat Energy Within the Power Plant—The Power Behind the Turbines

 

It’s dependent upon the amount of pressure exerted on its surface, which varies due to a variety of reasons, including where it is in relation to sea level.   Before we see what happens under higher than atmospheric pressures, such as exist in an electric utility power plant boiler, let’s cover some basics.

      In the power plant, water is heated in a boiler specifically to produce steam, unlike our tea kettle where the primary purpose is to produce hot water.   The steam produced is used to spin turbine generators, which in turn generate electricity, as I explained in a previous blog on steam turbines.

      Unlike a tea kettle, which is open to the atmosphere on your kitchen stove, the boiler in a power plant is an enclosed, reinforced steel vessel.   See illustration below.

Description: coal power plant expert

      The reinforced steel boiler vessel is designed to withstand great internal pressure as temperatures rise within.   In addition to providing a safety feature, the enclosed space provides a sheltered environment for collecting steam so it can later be put to use spinning power generating turbines down the line.   In other words, surface water inside the boiler is closed off from the surrounding atmosphere, allowing its internal pressure to build for our specific purposes.

      As heat energy is added to water within the boiler, the water boils and steam bubbles break out from its surface, filling the empty space above the surface with pressurized steam.   This steam will try to expand here, but it can’t, because it’s being constrained by the reinforced steel vessel within which it is enclosed.   Instead, steam pressure builds up on the surface of the water inside the boiler until it is high enough to be released through an attached pipe which is connected to a nearby turbine.