Polymers and Polymerization Reactions

Prior to the early 1920's, chemists doubted the existence of molecules having molecular weights greater than a few thousand. This limiting view was challenged by Hermann Staudinger, a German chemist with experience in studying natural compounds such as rubber and cellulose. In contrast to the prevailing rationalization of these substances as aggregates of small molecules, Staudinger proposed they were made up of macromolecules composed of 10,000 or more atoms. He formulated a polymeric structure for rubber, based on a repeating isoprene unit (referred to as a monomer). For his contributions to chemistry, Staudinger received the 1953 Nobel Prize. The terms polymer and monomer were derived from the Greek roots poly (many), mono (one) and meros (part).

Recognition that polymeric macromolecules make up many important natural materials was followed by the creation of synthetic analogs having a variety of properties. Indeed, applications of these materials as fibers, flexible films, adhesives, resistant paints and tough but light solids have transformed modern society. Some important examples of these substances are discussed in the following sections.

There are two general types of polymerization reactions: addition polymerization and condensation polymerization. In addition polymerization, the monomers add to one another in such a way that the polymer contains all the atoms of the starting monomers. Ethylene molecules are joined together in long chains.

Prior to the early 1920's, chemists doubted the existence of molecules having molecular weights greater than a few thousand. This limiting view was challenged by Hermann Staudinger, a German chemist with experience in studying natural compounds such as rubber and cellulose. In contrast to the prevailing rationalization of these substances as aggregates of small molecules, Staudinger proposed they were made up of macromolecules composed of 10,000 or more atoms. He formulated a polymeric structure for rubber, based on a repeating isoprene unit (referred to as a monomer). For his contributions to chemistry, Staudinger received the 1953 Nobel Prize. The terms polymer and monomer were derived from the Greek roots poly (many), mono (one) and meros (part).

Recognition that polymeric macromolecules make up many important natural materials was followed by the creation of synthetic analogs having a variety of properties. Indeed, applications of these materials as fibers, flexible films, adhesives, resistant paints and tough but light solids have transformed modern society. Some important examples of these substances are discussed in the following sections.

There are two general types of polymerization reactions: addition polymerization and condensation polymerization. In addition polymerization, the monomers add to one another in such a way that the polymer contains all the atoms of the starting monomers. Ethylene molecules are joined together in long chains.

 

Step 1: Chain Initiation

The oxygen reacts with some of the ethene to give an organic peroxide. Organic peroxides are very reactive molecules containing oxygen-oxygen single bonds which are quite weak and which break easily to give free radicals. You can short-cut the process by adding other organic peroxides directly to the ethene instead of using oxygen if you want to. The type of the free radicals that start the reaction off vary depending on their source. For simplicity we give them a general formula: Ra∙Ra∙

Step 2: Chain Propagation

In an ethene molecule, CH2=CH2, the two pairs of electrons which make up the double bond aren't the same. One pair is held securely on the line between the two carbon nuclei in a bond called a sigma bond. The other pair is more loosely held in an orbital above and below the plane of the molecule known as a ππ bond.

Imagine what happens if a free radical approaches the ππ bond in ethene.

 

The sigma bond between the carbon atoms isn't affected by any of this. The free radical, Ra, uses one of the electrons in the ππ bond to help to form a new bond between itself and the left hand carbon atom. The other electron returns to the right hand carbon. You can show this using "curly arrow" notation if you want to:

 

This is energetically worth doing because the new bond between the radical and the carbon is stronger than the ππ bond which is broken. You would get more energy out when the new bond is made than was used to break the old one. The more energy that is given out, the more stable the system becomes. What we've now got is a bigger free radical - lengthened by CH2CH2. That can react with another ethene molecule in the same way:

So now the radical is even bigger. That can react with another ethene - and so on and so on. The polymer chain gets longer and longer.

Step 3: Chain Termination

The chain does not, however, grow indefinitely. Sooner or later two free radicals will collide together.

That immediately stops the growth of two chains and produces one of the final molecules in the poly(ethene). It is important to realise that the poly(ethene) is going to be a mixture of molecules of different sizes, made in this sort of random way. Because chain termination is a random process, poly(ethene) will be made up of chains of different lengths.

Step-Reaction (Condensation) Polymerization

A large number of important and useful polymeric materials are not formed by chain-growth processes involving reactive species such as radicals, but proceed instead by conventional functional group transformations of polyfunctional reactants. These polymerizations often (but not always) occur with loss of a small byproduct, such as water, and generally (but not always) combine two different components in an alternating structure. The polyester Dacron and the polyamide Nylon 66, shown here, are two examples of synthetic condensation polymers, also known as step-growth polymers. In contrast to chain-growth polymers, most of which grow by carbon-carbon bond formation, step-growth polymers generally grow by carbon-heteroatom bond formation (C-O & C-N in Dacron & Nylon respectively). Although polymers of this kind might be considered to be alternating copolymers, the repeating monomeric unit is usually defined as a combined moiety.

Examples of naturally occurring condensation polymers are cellulose, the polypeptide chains of proteins, and poly(β-hydroxybutyric acid), a polyester synthesized in large quantity by certain soil and water bacteria. Formulas for these will be displayed below by clicking on the diagram.

Characteristics of Condensation Polymers

Condensation polymers form more slowly than addition polymers, often requiring heat, and they are generally lower in molecular weight. The terminal functional groups on a chain remain active, so that groups of shorter chains combine into longer chains in the late stages of polymerization. The presence of polar functional groups on the chains often enhances chain-chain attractions, particularly if these involve hydrogen bonding, and thereby crystallinity and tensile strength. The following examples of condensation polymers are illustrative.

Note that for commercial synthesis the carboxylic acid components may actually be employed in the form of derivatives such as simple esters. Also, the polymerization reactions for Nylon 6 and Spandex do not proceed by elimination of water or other small molecules. Nevertheless, the polymer clearly forms by a step-growth process. Some Condensation Polymers

The difference in Tg and Tm between the first polyester (completely aliphatic) and the two nylon polyamides (5th & 6th entries) shows the effect of intra-chain hydrogen bonding on crystallinity. The replacement of flexible alkylidene links with rigid benzene rings also stiffens the polymer chain, leading to increased crystalline character, as demonstrated for polyesters (entries 1, 2 &3) and polyamides (entries 5, 6, 7 & 8). The high Tg and Tm values for the amorphous polymer Lexan are consistent with its brilliant transparency and glass-like rigidity. Kevlar and Nomex are extremely tough and resistant materials, which find use in bullet-proof vests and fire resistant clothing.

Many polymers, both addition and condensation, are used as fibers The chief methods of spinning synthetic polymers into fibers are from melts or viscous solutions. Polyesters, polyamides and polyolefins are usually spun from melts, provided the Tm is not too high. Polyacrylates suffer thermal degradation and are therefore spun from solution in a volatile solvent. Cold-drawing is an important physical treatment that improves the strength and appearance of these polymer fibers. At temperatures above Tg, a thicker than desired fiber can be forcibly stretched to many times its length; and in so doing the polymer chains become untangled, and tend to align in a parallel fashion. This cold-drawing procedure organizes randomly oriented crystalline domains, and also aligns amorphous domains so they become more crystalline. In these cases, the physically oriented morphology is stabilized and retained in the final product. This contrasts with elastomeric polymers, for which the stretched or aligned morphology is unstable relative to the amorphous random coil morphology.

This cold-drawing treatment may also be used to treat polymer films (e.g. Mylar & Saran) as well as fibers.

Step-growth polymerization is also used for preparing a class of adhesives and amorphous solids called epoxy resins. Here the covalent bonding occurs by an SN2 reaction between a nucleophile, usually an amine, and a terminal epoxide. In the following example, the same bisphenol A intermediate used as a monomer for Lexan serves as a difunctional scaffold to which the epoxide rings are attached. Bisphenol A is prepared by the acid-catalyzed condensation of acetone with phenol.