Development petrophysics
Development petrophysics emphasizes the integration of core data with log data; the adjustment of core data, when required, to reservoir conditions; and the calibration and regression line-fitting of log data to core data. The goal of the calculations is to use all available data, calibrated to the best standard, to arrive at the most accurate quantitative values of the petrophysical parameters (i.e., lithology, net pay, porosity, water saturation, and permeability).
In practical terms, petrophysics is used for two types of calculations: determination of original hydrocarbons in place [original oil in place (OOIP) or original gas in place (OGIP)] and their distribution, and reservoir-engineering dynamic flow calculations. For the development geoscientists (geologists, geophysicists, and geostatisticians), petrophysics means developing the detailed stratigraphic, depositional, and diagenetic descriptions of the reservoir, both vertically and areally. To make accurate calculations of OOIP or OGIP and the various flow calculations, accurate foot-by-foot calculations of lithology, net pay, porosity, water saturation, and permeability are necessary. These calculations need to be made not only as overall calculations, but also so that the variation and distribution of these parameters are determined appropriately.
Some of the petrophysical calculations can be made in several ways, particularly for porosity and water saturation. One key to arriving at an accurate petrophysical calculation is to obtain the same quantitative result with a variety of techniques. An important consideration is the acquisition and handling of the various types of petrophysical data and, for each reservoir, the preparation of its unique petrophysical database. Petrophysical data take many forms and, for many reservoirs, may not be as comprehensive as desired. The technical personnel working with these data have to review what data are available, their quality, and what additional data might be acquired from the existing wellbores and from preserved and unpreserved cores. Finally, if there are sufficient financial stakes, new wells might be drilled, cores cut, various additional sample measurements made, and both conventional and special logs run to obtain other desired petrophysical information.
Log analysis is used universally and is generally successful in the identification of oil and gas reservoirs and in the preliminary estimation of their volumes. However, log analysis augmented and calibrated with core and other data provides the most accurate quantification of oil and gas volumes present in a well and best represents the practice of petrophysics.
The description of petrophysical calculations are focused at the reservoir level, where there are several to hundreds of wells with logs and significant amounts of core data that need to be integrated to develop the most accurate overall values for the petrophysical parameters over the whole of the reservoir. The techniques discussed also apply to single wellbores, but many of the complications are not a concern in single-well evaluation. Some special cases, such as oil shales, tight gas-sand reservoirs, or coalbed-methane reservoirs, may require different calculations that those used for more typical oil and gas reservoirs.