Fuel-injection technology
One objectionable feature of the full diesel was the necessity of a high-pressure, injection air compressor. Not only was energy required to drive the air compressor, but a refrigerating effect that delayed ignition occurred when the compressed air, typically at 6.9 megapascals (1,000 pounds per square inch), suddenly expanded into the cylinder, which was at a pressure of about 3.4 to 4 megapascals (493 to 580 pounds per square inch). Diesel had needed high-pressure air with which to introduce powdered coal into the cylinder; when liquid petroleum replaced powdered coal as fuel, a pump could be made to take the place of the high-pressure air compressor.
There were a number of ways in which a pump could be used. In England the Vickers Company used what was called the common-rail method, in which a battery of pumps maintained the fuel under pressure in a pipe running the length of the engine with leads to each cylinder. From this rail (or pipe) fuel-supply line, a series of injection valves admitted the fuel charge to each cylinder at the right point in its cycle. Another method employed cam-operated jerk, or plunger-type, pumps to deliver fuel under momentarily high pressure to the injection valve of each cylinder at the right time.
The elimination of the injection air compressor was a step in the right direction, but there was yet another problem to be solved: the engine exhaust contained an excessive amount of smoke, even at outputs well within the horsepower rating of the engine and even though there was enough air in the cylinder to burn the fuel charge without leaving a discoloured exhaust that normally indicated overload. Engineers finally realized that the problem was that the momentarily high-pressure injection air exploding into the engine cylinder had diffused the fuel charge more efficiently than the substitute mechanical fuel nozzles were able to do, with the result that without the air compressor the fuel had to search out the oxygen atoms to complete the combustion process, and, since oxygen makes up only 20 percent of the air, each atom of fuel had only one chance in five of encountering an atom of oxygen. The result was improper burning of the fuel.
The usual design of a fuel-injection nozzle introduced the fuel into the cylinder in the form of a cone spray, with the vapour radiating from the nozzle, rather than in a stream or jet. Very little could be done to diffuse the fuel more thoroughly. Improved mixing had to be accomplished by imparting additional motion to the air, most commonly by induction-produced air swirls or a radial movement of the air, called squish, or both, from the outer edge of the piston toward the centre. Various methods have been employed to create this swirl and squish. Best results are apparently obtained when the air swirl bears a definite relation to the fuel-injection rate. Efficient utilization of the air within the cylinder demands a rotational velocity that causes the entrapped air to move continuously from one spray to the next during the injection period, without extreme subsidence between cycles.