Foaming and priming in boilers
Boiler water carry-over is the contamination of the steam with boiler-water solids. Bubbles or froth actually build up on the surface of the boiler water and pass out with the steam. This is called foaming and it is caused by high concentration of any solids in the boiler water. It is generally believed, however, that specific substances such as alkalis, oils, fats, greases, certain types of organic matter and suspended solids are particularly conducive to foaming. In theory suspended solids collect in the surface film surrounding a steam bubble and make it tougher. The steam bubble therefore resists breaking and builds up foam. It is believed that the finer the suspended particles the greater their collection in the bubble.
Priming is the carryover of varying amounts of droplets of water in the steam (foam and mist), which lowers the energy efficiency of the steam and leads to the deposit of salt crystals on the super heaters and in the turbines. Priming may be caused by improper construction of boiler, excessive ratings, or sudden fluctuations in steam demand. Priming is sometimes aggravated by impurities in the boiler-water.
Some mechanical entrainment of minute drops of boiler water in the steam always occurs. When this boiler water carryover is excessive, steam-carried solids produce turbine blade deposits. The accumulations have a composition similar to that of the dissolved solids in the boiler water. Priming is common cause of high levels of boiler water carryover. These conditions often lead to super heater tube failures as well. Priming is related to the viscosity of the water and its tendency to foam. These properties are governed by alkalinity, the presence of certain organic substances and by total salinity or TDS. The degree of priming also depends on the design of the boiler and its steaming rate.
The most common measure to prevent foaming and priming is to maintain the concentration of solids in the boiler water at reasonably low levels. Avoiding high water levels, excessive boiler loads, and sudden load changes also helps. Very often contaminated condensate returned to the boiler system causes carry-over problems. In these cases the condensate should be temporarily wasted until the source of contamination is found and eliminated. The use of chemical anti-foaming and anti-priming agents, mixtures of surface-active agents that modify the surface tension of a liquid, remove foam and prevent the carry-over of fine water particles in the stream, can be very effective in preventing carry-over due to high concentrations of impurities in the boiler-water.