Two-Port Parameter Conversions
Follow these steps, while converting one set of two port network parameters into the other set of two port network parameters.
· Step 1 − Write the equations of a two port network in terms of desired parameters.
· Step 2 − Write the equations of a two port network in terms of given parameters.
· Step 3 − Re-arrange the equations of Step2 in such a way that they should be similar to the equations of Step1.
· Step 4 − By equating the similar equations of Step1 and Step3, we will get the desired parameters in terms of given parameters. We can represent these parameters in matrix form.
Here, we have to represent Y parameters in terms of Z parameters. So, in this case Y parameters are the desired parameters and Z parameters are the given parameters.
Step 1 − We know that the following set of two equations, which represents a two port network in terms of Y parameters.
I2=Y21V1+Y22V2I2=Y21V1+Y22V2
We can represent the above two equations in matrix form as
[I1I2]=[Y11Y21Y12Y22][V1V2][I1I2]=[Y11Y12Y21Y22][V1V2]Equation 1
Step 2 − We know that the following set of two equations, which represents a two port network in terms of Z parameters.
V1=Z11I1+Z12I2V1=Z11I1+Z12I2
V2=Z21I1+Z22I2V2=Z21I1+Z22I2s
We can represent the above two equations in matrix form as
[V1V2]=[Z11Z21Z12Z22][I1I2][V1V2]=[Z11Z12Z21Z22][I1I2]
Step 3 − We can modify it as
[I1I2]=[Z11Z21Z12Z22]−1[V1V2][I1I2]=[Z11Z12Z21Z22]−1[V1V2]Equation 2
Step 4 − By equating Equation 1 and Equation 2, we will get
[Y11Y21Y12Y22]=[Z11Z21Z12Z22]−1[Y11Y12Y21Y22]=[Z11Z12Z21Z22]−1
⇒[Y11Y21Y12Y22]=[Z22−Z21−Z12Z11]ΔZ⇒[Y11Y12Y21Y22]=[Z22−Z12−Z21Z11]ΔZ
Where,
ΔZ=Z11Z22−Z12Z21ΔZ=Z11Z22−Z12Z21
So, just by doing the inverse of Z parameters matrix, we will get Y parameters matrix.
Here, we have to represent T parameters in terms of Z parameters. So, in this case T parameters are the desired parameters and Z parameters are the given parameters.
Step 1 − We know that, the following set of two equations, which represents a two port network in terms of T parameters.
I1=CV2−DI2I1=CV2−DI2
Step 2 − We know that the following set of two equations, which represents a two port network in terms of Z parameters.
V1=Z11I1+Z12I2V1=Z11I1+Z12I2
V2=Z21I1+Z22I2V2=Z21I1+Z22I2
Step 3 − We can modify the above equation as
⇒V2−Z22I2=Z21I1⇒V2−Z22I2=Z21I1
⇒I1=⟮1Z21⟯V2−⟮Z22Z21⟯I2⇒I1=⟮1Z21⟯V2−⟮Z22Z21⟯I2
Step 4 − The above equation is in the form of I1=CV2−DI2I1=CV2−DI2. Here,
C=1Z21C=1Z21
D=Z22Z21D=Z22Z21
Step 5 − Substitute I1I1 value of Step 3 in V1V1 equation of Step 2.
V1=Z11{⟮1Z12⟯V2−⟮Z22Z21⟯I2}+Z12I2V1=Z11{⟮1Z12⟯V2−⟮Z22Z21⟯I2}+Z12I2
⇒V1=⟮Z11Z21⟯V2−⟮Z11Z22−Z12Z21Z21⟯I2⇒V1=⟮Z11Z21⟯V2−⟮Z11Z22−Z12Z21Z21⟯I2
Step 6 − The above equation is in the form of V1=AV2−BI2V1=AV2−BI2. Here,
A=Z11Z21A=Z11Z21
B=Z11Z22−Z12Z21Z21B=Z11Z22−Z12Z21Z21
Step 7 − Therefore, the T parameters matrix is
[ACBD]=⎡⎣Z11Z211Z21Z11Z22−Z12Z21Z21Z22Z21⎤⎦[ABCD]=[Z11Z21Z11Z22−Z12Z21Z211Z21Z22Z21]
Y parameters to Z parameters
Here, we have to represent Z parameters in terms of Y parameters. So, in this case Z parameters are the desired parameters and Y parameters are the given parameters.
Step 1 − We know that, the following matrix equation of two port network regarding Z parameters as
[V1V2]=[Z11Z21Z12Z22][I1I2][V1V2]=[Z11Z12Z21Z22][I1I2]Equation 3
Step 2 − We know that, the following matrix equation of two port network regarding Y parameters as
[I1I2]=[Y11Y21Y12Y22][V1V2][I1I2]=[Y11Y12Y21Y22][V1V2]
Step 3 − We can modify it as
[V1V2]=[Y11Y21Y12Y22]−1[I1I2][V1V2]=[Y11Y12Y21Y22]−1[I1I2]Equation 4
Step 4 − By equating Equation 3 and Equation 4, we will get
[Z11Z21Z12Z22]=[Y11Y21Y12Y22]−1[Z11Z12Z21Z22]=[Y11Y12Y21Y22]−1
⇒[Z11Z21Z12Z22]=[Y22−Y21−Y12Y11]ΔY⇒[Z11Z12Z21Z22]=[Y22−Y12−Y21Y11]ΔY
Where,
ΔY=Y11Y22−Y12Y21ΔY=Y11Y22−Y12Y21
So, just by doing the inverse of Y parameters matrix, we will get the Z parameters matrix.
Y parameters to T parameters
Here, we have to represent T parameters in terms of Y parameters. So, in this case, T parameters are the desired parameters and Y parameters are the given parameters.
Step 1 − We know that, the following set of two equations, which represents a two port network in terms of T parameters.
V1=AV2−BI2V1=AV2−BI2
I1=CV2−DI2I1=CV2−DI2
Step 2 − We know that the following set of two equations of two port network regarding Y parameters.
I1=Y11V1+Y12V2I1=Y11V1+Y12V2
I2=Y21V1+Y22V2I2=Y21V1+Y22V2
Step 3 − We can modify the above equation as
⇒I2−Y22V2=Y21V1⇒I2−Y22V2=Y21V1
⇒V1=⟮−Y22Y21⟯V2−⟮−1Y21⟯I2⇒V1=⟮−Y22Y21⟯V2−⟮−1Y21⟯I2
Step 4 − The above equation is in the form of V1=AV2−BI2V1=AV2−BI2. Here,
A=−Y22Y21A=−Y22Y21
B=−1Y21B=−1Y21
Step 5 − Substitute V1V1 value of Step 3 in I1I1 equation of Step 2.
I1=Y11{⟮−Y22Y21⟯V2−⟮−1Y21⟯I2}+Y12V2I1=Y11{⟮−Y22Y21⟯V2−⟮−1Y21⟯I2}+Y12V2
⇒I1=⟮Y12Y21−Y11Y22Y21⟯V2−⟮−Y11Y21⟯I2⇒I1=⟮Y12Y21−Y11Y22Y21⟯V2−⟮−Y11Y21⟯I2
Step 6 − The above equation is in the form of I1=CV2−DI2I1=CV2−DI2. Here,
C=Y12Y21−Y11Y22Y21C=Y12Y21−Y11Y22Y21
D=−Y11Y21D=−Y11Y21
Step 7 − Therefore, the T parameters matrix is
[ACBD]=⎡⎣−Y22Y21Y12Y21−Y11Y22Y21−1Y21−Y11Y21⎤⎦[ABCD]=[−Y22Y21−1Y21Y12Y21−Y11Y22Y21−Y11Y21]
T parameters to h-parameters
Here, we have to represent h-parameters in terms of T parameters. So, in this case hparameters are the desired parameters and T parameters are the given parameters.
Step 1 − We know that, the following h-parameters of a two port network.
h11=V1I1,whenV2=0h11=V1I1,whenV2=0
h12=V1V2,whenI1=0h12=V1V2,whenI1=0
h21=I2I1,whenV2=0h21=I2I1,whenV2=0
h22=I2V2,whenI1=0h22=I2V2,whenI1=0
Step 2 − We know that the following set of two equations of two port network regarding T parameters.
V1=AV2−BI2V1=AV2−BI2Equation 5
I1=CV2−DI2I1=CV2−DI2Equation 6
Step 3 − Substitute V2=0V2=0 in the above equations in order to find the two h-parameters, h11h11 and h21h21.
⇒V1=−BI2⇒V1=−BI2
⇒I1=−DI2⇒I1=−DI2
Substitute, V1V1 and I1I1 values in h-parameter, h11h11.
h11=−BI2−DI2h11=−BI2−DI2
⇒h11=BD⇒h11=BD
Substitute I1I1 value in h-parameter h21h21.
h21=I2−DI2h21=I2−DI2
⇒h21=−1D⇒h21=−1D
Step 4 − Substitute I1=0I1=0 in the second equation of step 2 in order to find the h-parameter h22h22.
0=CV2−DI20=CV2−DI2
⇒CV2=DI2⇒CV2=DI2
⇒I2V2=CD⇒I2V2=CD
⇒h22=CD⇒h22=CD
Step 5 − Substitute I2=⟮CD⟯V2I2=⟮CD⟯V2 in the first equation of step 2 in order to find the h-parameter, h12h12.
V1=AV2−B⟮CD⟯V2V1=AV2−B⟮CD⟯V2
⇒V1=⟮AD−BCD⟯V2⇒V1=⟮AD−BCD⟯V2
⇒V1V2=AD−BCD⇒V1V2=AD−BCD
⇒h12=AD−BCD⇒h12=AD−BCD
Step 6 − Therefore, the h-parameters matrix is
[h11h21h12h22]=[BD−1DAD−BCDCD][h11h12h21h22]=[BDAD−BCD−1DCD]
h-parameters to Z parameters
Here, we have to represent Z parameters in terms of h-parameters. So, in this case Z parameters are the desired parameters and h-parameters are the given parameters.
Step 1 − We know that, the following set of two equations of two port network regarding Z parameters.
V1=Z11I1+Z12I2V1=Z11I1+Z12I2
V2=Z21I1+Z22I2V2=Z21I1+Z22I2
Step 2 − We know that, the following set of two equations of two-port network regarding h-parameters.
V1=h11I1+h12V2V1=h11I1+h12V2
I2=h21I1+h22V2I2=h21I1+h22V2
Step 3 − We can modify the above equation as
⇒I2−h21I1=h22V2⇒I2−h21I1=h22V2
⇒V2=I2−h21I1h22⇒V2=I2−h21I1h22
⇒V2=⟮−h21h22⟯I1+⟮1h22⟯I2⇒V2=⟮−h21h22⟯I1+⟮1h22⟯I2
The above equation is in the form of V2=Z21I1+Z22I2.Here,V2=Z21I1+Z22I2.Here,
Z21=−h21h22Z21=−h21h22
Z22=1h22Z22=1h22
Step 4 − Substitute V2 value in first equation of step 2.
V1=h11I1+h21{⟮−h21h22⟯I1+⟮1h22⟯I2}V1=h11I1+h21{⟮−h21h22⟯I1+⟮1h22⟯I2}
⇒V1=⟮h11h22−h12h21h22⟯I1+⟮h12h22⟯I2⇒V1=⟮h11h22−h12h21h22⟯I1+⟮h12h22⟯I2
The above equation is in the form of V1=Z11I1+Z12I2V1=Z11I1+Z12I2. Here,
Z11=h11h22−h12h21h22Z11=h11h22−h12h21h22
Z12=h12h22Z12=h12h22
Step 5 − Therefore, the Z parameters matrix is
[Z11Z21Z12Z22]=⎡⎣h11h22−h12h21h22−h21h22h12h221h22⎤⎦[Z11Z12Z21Z22]=[h11h22−h12h21h22h12h22−h21h221h22]
In this way, we can convert one set of parameters into other set of parameters.