A vector is a quantity that has both magnitude and
direction. Displacement, velocity, acceleration, andforce are the
vector quantities that we have discussed thus far in the Physics Classroom
Tutorial. In the first couple of units, all vectors that we discussed were
simply directed up, down, left or right. When there was a free-body diagram depicting
the forces acting upon an object, each individual force was directed inone dimension - either
up or down or left or right. When an object had an acceleration and we
described its direction, it was directed in one
dimension - either up or down or left or right. Now in this unit, we begin to see
examples of vectors that are directed in two
dimensions - upward and rightward, northward and westward, eastward and southward,
etc.
In situations in which vectors are directed at angles to the
customary coordinate axes, a useful mathematical trick will be employed to transform the vector
into two parts with each part being directed along the coordinate axes. For
example, a vector that is directed northwest can be thought of as having two
parts - a northward part and a westward part. A vector that is directed upward
and rightward can be thought of as having two parts - an upward part and a
rightward part.
Any vector directed in two dimensions can be thought of as having an
influence in two different directions. That is, it can be thought of as having
two parts. Each part of a two-dimensional vector is known as acomponent. The components of a vector depict the influence of that vector in a
given direction. The combined influence of the two components is equivalent to
the influence of the single two-dimensional vector. The single two-dimensional
vector could be replaced by the two components.
If Fido's dog chain is stretched upward and rightward and
pulled tight by his master, then the tension force in the chain has two
components - an upward component and a rightward component. To Fido, the
influence of the chain on his body is equivalent to the influence of two chains
on his body - one pulling upward and the other pulling rightward. If the single
chain were replaced by two chains. with each
chain having the magnitude and direction of the components, then Fido would not
know the difference. This is not because Fido is dumb (a quick
glance at his picture reveals that he is certainly not that), but rather
because the combined influence of the two components is equivalent to the
influence of the single two-dimensional vector.
Consider a picture that is hung to a wall by means of two wires
that are stretched vertically and horizontally. Each wire exerts a tension
force upon the picture to support its weight. Since each wire is stretched in
two dimensions (both vertically and horizontally), the tension force of each
wire has two components - a vertical component and a horizontal component.
Focusing on the wire on the left, we could say that the wire has a leftward and
an upward component. This is to say that the wire on the left could be replaced
by two wires, one pulling leftward and the other pulling upward. If the single
wire were replaced by two wires (each one having the magnitude and direction of
the components), then there would be no effect upon the stability of the picture.
The combined influence of the two components is equivalent to the influence of
the single two-dimensional vector.
Consider an airplane that is flying from Chicago's O'Hare
International Airport to a destination in Canada. Suppose that the plane is
flying in such a manner that its resulting displacement vector is northwest. If
this is the case, then the displacement of the plane has two components - a
component in the northward direction and a component in the westward direction.
This is to say that the plane would have the same displacement if it were to
take the trip into Canada in two segments - one directed due North and the other directed due West. If the single
displacement vector were replaced by these two individual displacement vectors,
then the passengers in the plane would end up in the same final position. The
combined influence of the two components is equivalent to the influence of the
single two-dimensional displacement.
Any vector directed in two dimensions can be thought of as
having two different components. The component of a single vector describes the
influence of that vector in a given direction. In the next part of
this lesson, we will investigate two methods for
determining the magnitude of the components. That is, we will investigate how much influence
a vector exerts in a given direction.