A force is a push
or pull upon an object resulting from the object's interaction with another object. Whenever there is
an interaction between two objects, there is a force
upon each of the objects. When theinteraction ceases, the two objects no longer
experience the force. Forces only exist as a result of an interaction.
For simplicity sake, all forces (interactions) between objects can be placed into two broad categories:
· contact forces, and
· forces resulting from action-at-a-distance
Contact forces are those types of forces that result when the two interacting objects are perceived to be physically contacting each other. Examples of contact forces include frictional forces, tensional forces, normal forces, air resistance forces, and applied forces. These specific forces will be discussed in more detail later in Lesson 2 as well as in other lessons.
Action-at-a-distance forces are those types of forces that result even when the two interacting objects are not in physical contact with each other, yet are able to exert a push or pull despite their physical separation. Examples of action-at-a-distance forces include gravitational forces. For example, the sun and planets exert a gravitational pull on each other despite their large spatial separation. Even when your feet leave the earth and you are no longer in physical contact with the earth, there is a gravitational pull between you and the Earth. Electric forces are action-at-a-distance forces. For example, the protons in the nucleus of an atom and the electrons outside the nucleus experience an electrical pull towards each other despite their small spatial separation. And magnetic forces are action-at-a-distance forces. For example, two magnets can exert a magnetic pull on each other even when separated by a distance of a few centimeters. These specific forces will be discussed in more detail later in Lesson 2 as well as in other lessons.
Examples of contact and action-at-distance forces are listed in the table below.
Contact Forces |
Action-at-a-Distance Forces |
Frictional Force |
Gravitational Force |
Tension Force |
Electrical Force |
Normal Force |
Magnetic Force |
Air Resistance Force |
|
Applied Force |
|
Spring Force |
|
Force is a quantity that is measured using the standard metric unit known as the Newton. A Newton is abbreviated by an "N." To say "10.0 N" means 10.0 Newton of force. One Newton is the amount of force required to give a 1-kg mass an acceleration of 1 m/s/s. Thus, the following unit equivalency can be stated:
1 Newton = 1 kg • m/s2