Equivalence of Mass and Energy

 

Mass-energy

You've encountered two conservation laws so far: conservation of mass and conservation of energy. If conservation of energy is a consequence of symmetry, is there a deeper reason for conservation of mass?

Actually they're not even separate conservation laws. Albert Einstein found, as a consequence of his theory of relativity, that mass and energy are equivalent, and are not separately conserved --- one can be converted into the other. Imagine that a magician waves his wand, and changes a bowl of dirt into a bowl of lettuce. You'd be impressed, because you were expecting that both dirt and lettuce would be conserved quantities. Neither one can be made to vanish, or to appear out of thin air. However, there are processes that can change one into the other. A farmer changes dirt into lettuce, and a compost heap changes lettuce into dirt. At the most fundamental level, lettuce and dirt aren't really different things at all; they're just collections of the same kinds of atoms --- carbon, hydrogen, and so on.

We won't examine relativity in detail in this book, but mass-energy equivalence is an inevitable implication of the theory, and it's the only part of the theory that most people have heard of, via the famous equation E=mc2. This equation tells us how much energy is equivalent to how much mass: the conversion factor is the square of the speed of light, c. Since c a big number, you get a really really big number when you multiply it by itself to get c2. This means that even a small amount of mass is equivalent to a very large amount of energy.

Example 1: Gravity bending light

Gravity is a universal attraction between things that have mass, and since the energy in a beam of light is equivalent to a some very small amount of mass, we expect that light will be affected by gravity, although the effect should be very small. The first experimental confirmation of relativity came in 1919 when stars next to the sun during a solar eclipse were observed to have shifted a little from their ordinary position. (If there was no eclipse, the glare of the sun would prevent the stars from being observed.) Starlight had been deflected by the sun's gravity. Figure 1.7.1 is a photographic negative, so the circle that appears bright is actually the dark face of the moon, and the dark area is really the bright corona of the sun. The stars, marked by lines above and below then, appeared at positions slightly different than their normal ones.

Example 2: Black holes

A star with sufficiently strong gravity can prevent light from leaving. Quite a few black holes have been detected via their gravitational forces on neighboring stars or clouds of gas and dust.

Because mass and energy are like two different sides of the same coin, we may speak of mass-energy, a single conserved quantity, found by adding up all the mass and energy, with the appropriate conversion factor: E+mc2.

Example 3: A rusting nail

◊ An iron nail is left in a cup of water until it turns entirely to rust. The energy released is about 500,000 joules. In theory, would a sufficiently precise scale register a change in mass? If so, how much?

◊ The energy will appear as heat, which will be lost to the environment. The total mass-energy of the cup, water, and iron will indeed be lessened by 500,000 joules. (If it had been perfectly insulated, there would have been no change, since the heat energy would have been trapped in the cup.) The speed of light in metric units is c=3×108 meters per second (scientific notation for 3 followed by 8 zeroes), so converting to mass units, we have

 

(The design of the metric system is based on the meter, the kilogram, and the second. The joule is designed to fit into this system, so the result comes out in units of kilograms.) The change in mass is too small to measure with any practical technique. This is because the square of the speed of light is such a large number in metric units.

The correspondence principle

The realization that mass and energy are not separately conserved is our first example of a general idea called the correspondence principle. When Einstein came up with relativity, conservation of energy had been accepted by physicists for decades, and conservation of mass for over a hundred years.

Does an example like this mean that physicists don't know what they're talking about? There is a recent tendency among social scientists to deny that the scientific method even exists, claiming that science is no more than a social system that determines what ideas to accept based on an in-group's criteria. If science is an arbitrary social ritual, it would seem difficult to explain its effectiveness in building such useful items as airplanes, CD players and sewers. If voodoo and astrology were no less scientific in their methods than chemistry and physics, what was it that kept them from producing anything useful? This silly attitude was effectively skewered by a famous hoax carried out in 1996 by New York University physicist Alan Sokal. Sokal wrote an article titled “Transgressing the Boundaries: Toward a Transformative Hermeneutics of Quantum Gravity,” and got it accepted by a cultural studies journal called Social Text.7 The scientific content of the paper is a carefully constructed soup of mumbo jumbo, using technical terms to create maximum confusion; I can't make heads or tails of it, and I assume the editors and peer reviewers at Social Text understood even less. The physics, however, is mixed in with cultural relativist statements designed to appeal to them --- “... the truth claims of science are inherently theory-laden and self-referential” --- and footnoted references to academic articles such as “Irigaray's and Hayles' exegeses of gender encoding in fluid mechanics ... and ... Harding's comprehensive critique of the gender ideology underlying the natural sciences in general and physics in particular...” On the day the article came out, Sokal published a letter explaining that the whole thing had been a parody --- one that apparently went over the heads of the editors of Social Text.

What keeps physics from being merely a matter of fashion is that it has to agree with experiments and observations. If a theory such as conservation of mass or conservation of energy became accepted in physics, it was because it was supported by a vast number of experiments. It's just that experiments never have perfect accuracy, so a discrepancy such as the tiny change in the mass of the rusting nail in example 15 was undetectable. The old experiments weren't all wrong. They were right, within their limitations. If someone comes along with a new theory he claims is better, it must still be consistent with all the same experiments. In computer jargon, it must be backward-compatible. This is called the correspondence principle: new theories must be compatible with old ones in situations where they are both applicable. The correspondence principle tells us that we can still use an old theory within the realm where it works, so for instance I'll typically refer to conservation of mass and conservation of energy in this book rather than conservation of mass-energy, except in cases where the new theory is actually necessary.

Ironically, the extreme cultural relativists want to attack what they see as physical scientists' arrogant claims to absolute truth, but what they fail to understand is that science only claims to be able to find partial, provisional truth. The correspondence principle tells us that each of today's scientific truth can be superseded tomorrow by another truth that is more accurate and more broadly applicable. It also tells us that today's truth will not lose any value when that happens.