Definition of Convergence and Divergence in Series

The nth partial sum of the series  an is given by Sn = a1 + a2 + a3 + ... + an. If the sequence of these partial sums {Sn} converges to L, then the sum of the series converges to L. If {Sn} diverges, then the sum of the series diverges.


Operations on Convergent Series

If  an = A, and  bn = B, then the following also converge as indicated:


 ca
n = cA
 (a
n + bn) = A + B
 (a
n - bn) = A - B

 

Alphabetical Listing of Convergence Tests

Absolute Convergence

If the series  |an| converges, then the series  an also converges.

Alternating Series Test

If for all n, an is positive, non-increasing (i.e. 0 < an+1 <= an), and approaching zero, then the alternating series
 (-1)
n an   and    (-1)n-1 an
both converge.
If the alternating series converges, then the remainder R
N = S - SN (where S is the exact sum of the infinite series and SN is the sum of the first N terms of the series) is bounded by |RN| <= aN+1


Deleting the first N Terms

If N is a positive integer, then the series

 an and 

   
 a
n  
n=N+1

both converge or both diverge.


Direct Comparison Test

If 0 <= an <= bn for all n greater than some positive integer N, then the following rules apply:
If  b
n converges, then  an converges.
If  a
n diverges, then  bn diverges.


Geometric Series Convergence

The geometric series is given by
 a r
n = a + a r + a r2 + a r3 + ...
If |r| < 1 then the following geometric series converges to a / (1 - r).

If |r| >= 1 then the above geometric series diverges.

Integral Test

If for all n >= 1, f(n) = an, and f is positive, continuous, and decreasing then  

 an and 

 an 

either both converge or both diverge.
If the above series converges, then the remainder R
N = S - SN (where S is the exact sum of the infinite series and SN is the sum of the first N terms of the series) is bounded by 0< = RN <= (N..) f(x) dx.

Limit Comparison Test

If lim (n-->) (an / bn) = L,
where a
n, bn > 0 and L is finite and positive,
then the series  a
n and  bn either both converge or both diverge.


nth-Term Test for Divergence

If the sequence {an} does not converge to zero, then the series  an diverges.


p-Series Convergence

The p-series is given by
 1/n
p = 1/1p + 1/2p + 1/3p + ...
where p > 0 by definition.
If p > 1, then the series converges.
If 0 < p <= 1 then the series diverges.

Ratio Test

If for all n, n  0, then the following rules apply:
Let L = lim (n -- > ) | a
n+1 / an |.
If L < 1, then the series  a
n converges.
If L > 1, then the series  a
n diverges.
If L = 1, then the test in 
inconclusive.

Root Test

Let L = lim (n -- > ) | an |1/n.
If L < 1, then the series  a
n converges.
If L > 1, then the series  a
n diverges.
If L = 1, then the test in 
inconclusive.

Taylor Series Convergence

If f has derivatives of all orders in an interval I centered at c, then the Taylor series converges as indicated:
 (1/n!) f
(n)(c) (x - c)n = f(x)
if and only if lim (n-->) RN = 0 for all x in I.
The remainder R
N = S - SN of the Taylor series (where S is the exact sum of the infinite series and SN is the sum of the first N terms of the series) is equal to (1/(n+1)!) f(n+1)(z) (x - c)n+1, where z is some constant between x and c.