Curl Of A Vector Function
Suppose I have a vector
such
as
.
Now the curl of this vector
will
be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ a_x & a_y & a_z \end{array}\right|.\]](17_files/image003.webp)
So if I evaluate the determinant, I’ll get the curl of this vector.
If interested, you can read more about the other posts in vector analysis like directional derivative, the gradient of a scalar field, unit normal vector, unit tangent vector and so on. Also, pretty soon I’ll write about the divergence of any vector.
Now I’ll give some examples.
According to Stroud and Booth
(2011)*, “Show that curl
is a
constant vector.”
Now here the given vector is
.
First of all, I’ll give it a name, say
.
So I can say
. And this means
.
Now, according to the formula for the curl of
a vector, curl of the vector
will be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ -y & x &0 \end{array}\right|.\]](17_files/image007.webp)
Next, I’ll evaluate this determinant to get
the curl
as
![\[\text{curl}~\textbf{A} = \textbf{i} \left[\cfrac{\partial}{\partial y}(0) - \cfrac{\partial}{\partial z} (x)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(0)-\cfrac{\partial}{\partial z}(-y)\right]+\textbf{k}\left[\cfrac{\partial}{\partial x}(x)-\cfrac{\partial}{\partial y}(-y)\right].\]](17_files/image008.webp)
So this gives
![\[\text{curl}~\textbf{A} = \textbf{i} \left[0 - 0\right] - \textbf{j}\left[0-0\right]+\textbf{k}\left[1-(-1)\right].\]](17_files/image009.webp)
Now I’ll simplify it to get
![\[\text{curl}~\textbf{A} = 2 \textbf{k}.\]](17_files/image010.webp)
And
is
obviously a constant vector.
Hence I can prove that the curl of the
vector
is a constant vector.
So this is the answer to this example.
Next, I’ll give another example.
According to Stroud and Booth
(2011)*, “If
, find curl
curl
.”
Now in this example, the given vector is
.
First of all, I’ll find out the curl of the
vector
.
So the curl of the vector
will
be
![\[ \text{curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ 2xz^2 & -xz &(y+z) \end{array}\right|.\]](17_files/image013.webp)
Next, I’ll evaluate this determinant to get
the curl
as
![\begin{eqnarray*}\text{curl}~\textbf{A} &=& \textbf{i} \left[\cfrac{\partial}{\partial y}(y+z) - \cfrac{\partial}{\partial z} (-xz)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(y+z)-\cfrac{\partial}{\partial z}(2xz^2)\right]\\&&+\textbf{k}\left[\cfrac{\partial}{\partial x}(-xz)-\cfrac{\partial}{\partial y}(2xz^2)\right].\end{eqnarray*}](17_files/image014.webp)
So this gives
![\[\text{curl}~\textbf{A} = \textbf{i} \left[1+x\right] - \textbf{j}\left[0-4xz\right]+\textbf{k}\left[-z-0\right].\]](17_files/image015.webp)
Now I’ll simplify it to get
![\[\text{curl}~\textbf{A} =(1+x)\textbf{i} + 4xz \textbf{j} - z \textbf{k}.\]](17_files/image016.webp)
Next I’ll get the curl of curl
,
that is, curl of the vector
.
Thus curl curl
will
be will be
![\[ \text{curl curl}~\textbf{A} = \nabla \times \textbf{A} = \left|\begin{array}{ccc} \textbf{i} & \textbf{j} &\textbf{k}\\ \cfrac{\partial}{\partial x} & \cfrac{\partial}{\partial y} & \cfrac{\partial}{\partial z}\\ (1+x) & 4xz &-z \end{array}\right|.\]](17_files/image018.webp)
Next, I’ll evaluate this determinant to get
the curl curl
as
![\begin{eqnarray*}\text{curl curl}~\textbf{A} &=& \textbf{i} \left[\cfrac{\partial}{\partial y}(-z) - \cfrac{\partial}{\partial z} (4xz)\right] - \textbf{j}\left[\cfrac{\partial}{\partial x}(-z)-\cfrac{\partial}{\partial z}(1+x)\right]\\&&+\textbf{k}\left[\cfrac{\partial}{\partial x}(4xz)-\cfrac{\partial}{\partial y}(1+x)\right].\end{eqnarray*}](17_files/image019.webp)
So this gives
![\[\text{curl curl}~\textbf{A} = \textbf{i} \left[0-4x\right] - \textbf{j}\left[0-0\right]+\textbf{k}\left[4z-0\right].\]](17_files/image020.webp)
Now I’ll simplify it to get
![\[\text{curl curl}~\textbf{A} =-4x\textbf{i} + 4z \textbf{k}.\]](17_files/image021.webp)
Hence I can conclude that curl curl
is the answer to this
example.