Divergence Of A Vector Function

 

Suppose I have a vector \textbf{A} such as \textbf{A} = a_x \textbf{i} + a_y \textbf{i} + a_z\textbf{i}.

Now the divergence of this vector \textbf{A} will be

  \[\text{div}~\textbf{A} = \nabla . \textbf{A} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}.\]

So if I use the technique for first-order partial differentiation of functions with three variables, I will get the divergence of the vector.

If interested, you can read more about the other posts in vector analysis like directional derivative, the gradient of a scalar field, unit normal vector, unit tangent vector, curl of any vector and so on.

Now I’ll give some examples on the divergence of a vector function.

 

EXAMPLE

 

According to Kreyszig (2005)*, “Find the divergence of the following vector function: [e^{2x}\cos 2y,~~~e^{2x}\sin 2y,~~~5e^{2z}].”

 

SOLUTION

 

Now here the given vector is [e^{2x}\cos 2y,~~~e^{2x}\sin 2y,~~~5e^{2z}].

First of all, I’ll give it a name, say, \textbf{A}.

So, in vector form, it will be

  \[\textbf{A} = e^{2x}\cos 2y\textbf{i}+e^{2x}\sin 2y\textbf{j}+5e^{2z}\textbf{k}.\]

As per the the formula for the divergence of any vector, divergence of \textbf{A} will be

  \[\text{div}\textbf{A}= \nabla . \textbf{A} =  \frac{\partial}{\partial x}(e^{2x}\cos 2y) + \frac{\partial}{\partial y} (e^{2x}\sin 2y) + \frac{\partial}{\partial z} (5e^{2z}).\]

Thus it will be

  \[\nabla . \textbf{A} =  \cos 2y\frac{\partial}{\partial x}(e^{2x}) + e^{2x}\frac{\partial}{\partial y} (\sin 2y) + 5\frac{\partial}{\partial z} (e^{2z}).\]

So this means

  \[\nabla . \textbf{A} =  \cos 2y (2.e^{2x}) + e^{2x} (2\cos 2y) + 5 (2. e^{2z}).\]

Now I’ll simplify it to get

  \[\nabla . \textbf{A} =  2e^{2x}\cos 2y  + 2 e^{2x} \cos 2y + 10 e^{2z}\]

which means 

  \[\nabla . \textbf{A} =  4e^{2x}\cos 2y + 10 e^{2z}.\]

Hence I can conclude that this is the solution to the given example.