Multiplexing

Because of the installation cost of a communications channel, such as a microwave link or a coaxial cable link, it is desirable to share the channel among multiple users. Provided that the channel’s data capacity exceeds that required to support a single user, the channel may be shared through the use of multiplexing methods. Multiplexing is the sharing of a communications channel through local combining of signals at a common point. Two types of multiplexing are commonly employed: frequency-division multiplexing and time-division multiplexing.

Frequency-division multiplexing

In frequency-division multiplexing (FDM), the available bandwidth of a communications channel is shared among multiple users by frequency translating, or modulating, each of the individual users onto a different carrier frequency. Assuming sufficient frequency separation of the carrier frequencies that the modulated signals do not overlap, recovery of each of the FDM signals is possible at the receiving end. In order to prevent overlap of the signals and to simplify filtering, each of the modulated signals is separated by a guard band, which consists of an unused portion of the available frequency spectrum. Each user is assigned a given frequency band for all time.

Analog multiplexing, as employed in the North American telephone systemIn frequency-division multiplexing (FDM), 12 separate voice signals,

each of 4-kilohertz bandwidth, are modulated onto carrier waves in the 60–108-kilohertz range. These modulated signals are combined to form a single complex group signal. Groups are further combined to form a hierarchy of increasing bandwidth and voice-carrying capacity.

While each user’s information signal may be either analog or digital, the combined FDM signal is inherently an analog waveform. Therefore, an FDM signal must be transmitted over an analog channel. Examples of FDM are found in some of the old long-distance telephone transmission systems, including the American N- and L-carrier coaxial cable systems and analog point-to-point microwave systems. In the L-carrier system a hierarchical combining structure is employed in which 12 voiceband signals are frequency-division multiplexed to form a group signal in the frequency range of 60 to 108 kilohertz. Five group signals are multiplexed to form a supergroup signal in the frequency range of 312 to 552 kilohertz, corresponding to 60 voiceband signals, and 10 supergroup signals are multiplexed to form a master group signal. In the L1 carrier system, deployed in the 1940s, the master group was transmitted directly over coaxial cable. For microwave systems, it was frequency modulated onto a microwave carrier frequency for point-to-point transmission. In the L4 system, developed in the 1960s, six master groups were combined to form a jumbo group signal of 3,600 voiceband signals.