Norton Theorem

This theorem is just alternative of Thevenin theorem. In Norton theorem, we just replace the circuit connected to a particular branch by equivalent current source. In this theorem, the circuit network is reduced into a single constant current source in which, the equivalent internal resistance is connected in parallel with it. Every voltage source can be converted into equivalent current source.
Suppose, in complex network we have to find out the
 current through a particular branch. If the network has one of more active sources, then it will supply current through the said branch. As in the said branch current comes from the network, it can be considered that the network itself is a current source. So in Norton theorem the network with different active sources is reduced to single current source that's internal resistance is nothing but the looking back resistance, connected in parallel to the derived source.

The looking back resistance of a network is the equivalent electrical resistance of the network when someone looks back into the network from the terminals where said branch is connected. During calculating this equivalent resistance, all sources are removed leaving their internal resistances in the network. Actually in Norton theorem, the branch of the network through which we have to find out the current, is removed from the network. After removing the branch, we short circuit the terminals where the said branch was connected. Then we calculate the short circuit current that flows between the terminals. This current is nothing but Norton equivalent current IN of the source. The equivalent resistance between the said terminals with all sources removed leaving their internal resistances in the circuit is calculated and said it is RN. Now we will form a current source that's current is IN A and internal shunt resistance is RN Ω.
For getting clearer concept of this theorem, we have explained it by the following example,
In the example two
 resistors R1 and R2 are connected in series and this series combination is connected across one voltage source of emf E with internal resistance Ri as shown. Series combination of one resistive branch of RL and another resistance R3 is connected across the resistance R2 as shown. Now we have to find out the current through RL by applying Norton theorem.
norton theorem 01
First, we have to remove the resistor RL from terminals A and B and make the terminals A and B short circuited by zero resistance.
Second, we have to calculate the short circuit current or Norton equivalent 
 current IN through the points A and B.
norton theorem 02
The equivalent resistance of the network,

To determine internal
 resistance or Norton equivalent resistance RN of the network under consideration, remove the branch between A and B and also replace the voltage source by its internal resistance. Now the equivalent resistance as viewed from open terminals A and B is RN,
norton theorem 03

As per Norton theorem, when
 resistance RL is reconnected across terminals A and B, the network behaves as a source of constant current IN with shunt connected internal resistance RN and this is Norton equivalent circuit. 

Norton Equivalent Circuit


norton theorem 04
Biot Savart Law

The mathematical expression for magnetic flux density was derived by Jean Baptiste Biot and Felix Savart. Talking the deflection of a compass needle as a  measure of the intensity of a current, varying in magnitude and shape, the two scientists concluded that any current element projects into space a magnetic field, the magnetic flux density of which dB, is directly proportional to the length of the element dl, the current I, the sine of the angle and θ between direction of the current and the vector joining a given point of the field and the current element and is inversely proportional to the square of the distance of the given point from the current element, r. This is Biot Savart lawstatement. 
Where, K is a constant, depends upon the magnetic properties of the medium and system of the units employed. In
 SI system of unit

Therefore, final Biot Savart law derivation is,

Let us consider a long wire carrying an current I and also consider a point p. The wire is presented in the below picture by red color. Let us also consider an infinitely small length of the wire dl at a distance r from the point P as shown. Here, r is a distance vector which makes an angle θ with the direction of current in the infinitesimal portion of the wire.

If you try to visualize the condition, you can easily understand the magnetic field density at that point P due to that infinitesimal length dl of wire is directly proportional to current carried by this portion of the wire. That means current through this infinitesimal portion of the wire is increased the magnetic field density  due to this infinitesimal length of wire, at point P increases proportionally and if the current through this portion of wire is decreased the magnetic field density at point P due to this infinitesimal length of wire decreases proportionally.
As the current through that infinitesimal length of wire is same as the current carried by the wire itself.

It is also very natural to think that the magnetic field density at that point P due to that infinitesimal length dl of wire is inversely proportional to the square of the straight distance from point P to center of dl. That means distance r of this infinitesimal portion of the wire is increased the magnetic field density  due to this infinitesimal length of wire, at point P decreases and if the distance of this portion of wire from point P, is decreased, the magnetic field density at point P due to this infinitesimal length of wire increases accordingly.

biot savart law
Lastly, field density at that point P due to that infinitesimal portion of wire is also directly proportional to the actual length of the infinitesimal length dl of wire. As θ be the angle between distance vector r and direction of current through this infinitesimal portion of the wire. The component of dl directly facing perpendicular to the point P is dlsinθ,

Now combining these three statements, we can write,

This is the basic form of Biot Savart's Law
Now putting the value of constant k (which we have already introduced at the beginning of this article) in the above expression, we get 

Here, μ0 used in the expression of constant k is absolute permeability of air or vacuum and it's value is 4π10-7 Wb/ A-m in SI system of units. μr of the expression of constant k is relative permeability of the medium.  
Now, flux density(B) at the point P due to total length of the current carrying conductor or wire can be represented as, 

biot savart law
 If D is the perpendicular distance of the point P form the wire, then

Now, the expression of flux density B at point P can be rewritten as,


As per the figure above,

Finally the expression of B comes as,

This angle θ depends upon the length of the wire and the position of the point P. Say for certain limited length of the wire, angle θ as indicated in the figure above varies from θ1 to θ2. Hence, flux density at point P due to total length of the
 conductor is, 

Let's imagine the wire is infinitely long, then θ will vary from 0 to π that is θ1 = 0 to θ2 = π. Putting these two values in the above final expression of Biot Savart law, we get,

This is nothing but the expression of Ampere's Law.