With regard to circuits, the
broad answer to this question is – all of them. Heat in circuitry is caused by
resistance, a property found in every part of a circuit: wire, capacitors,
resistors, semiconductors, batteries, solder. Heat is the effect caused by
current traveling through a resistance in which power is lost to the
surrounding media in the form of a temperature increase. In many of these
components the heating is trivial; unless you are a power engineer, you
probably will not have to deal with keeping copper wire cooled with mineral
oil. However for some of these devices heat is a real issue that needs to be
addressed-- in particular the heat generated by semiconductors.
In analog applications
of semiconductors, heat will most often be encountered in voltage regulators
and output transistors. With regulators, the power lost to heat is pretty easy
to conceptualize: if you have a 12 Volt supply and wish do generate an output
of 5 Volts using a regulator, then with a circuit drawing one Amp of output
current, the regulator has 12 Watts going into the device, and 5 Watts coming
out. What happened to the other 7 watts? They have been burned off in the form
of heat; we will come back to this example when talking about dissipating this
heat.
On to output transistors- in
an ideal world, transistors do not dissipate power when they are fully on or
fully off. To illustrate this we can use the classic example of an ideal switch:
Case 1: Switch
Open
Case 2: Switch
Closed
In case 1, the switch is an
open circuit and no current may flow through the switch or the resistor because
we have from Ohm’s law that:
Now in case 2, the switch has been closed and now there is 1mA of current flowing through the switch and resistor. Now that there is current through our switch, let’s look at how much power it is dissipating. We know that an ideal closed switch is a perfect conductor, i.e. presenting no resistance; so our equation for power dissipated by the switch becomes
Thus, no power is dissipated
by the switch in either the closed or open cases. However in real life we are
not using ideal components: BJT’s have a VCE_Sat usually
around 0.2 Volts when fully on and even MOSFETs have a small resistance RDS_On when fully on. For most cases these values are
low enough that the power dissipated is very low; it is the state between off
and on that dissipates the most power. In a power handling device such as an
audio power amplifier, transistors will amplify sinusoidal waveforms to be
delivered into a low impedance load, usually a speaker.
A properly biased Class
– A output (one that is operating for the
entire 360 degree wave cycle) will have this output transistor constantly
transitioning between off and on, never quite reaching either, in a sinusoidal
pattern mimicking that of the input. Thus a Class –A amp
will dissipate the most power with zero signal applied, because at this point
the transistor will be exactly halfway between the off and on states. This is
important to note, because the power dissipated during the zero input condition
is what will be used to determine the size of heatsink needed to keep the
transistors from overheating. A Class – B output (in which each output device
operates for exactly half of the wave cycle) will generate much less heat, as
it spends half its time in the fully off state to which it is biased. In this
case the amplifier dissipates the least amount of power as heat in the zero
input signal condition, making Class – B amplifiers more thermally efficient
than Class – A.
In digital applications of
semiconductors, the goal is to switch between on and off states at the clock
frequency, spending no time in between and thus dissipating no power. Once
again we run into the issue that these devices are not perfect; for a given
CMOS transistor there is a minimum transition time based on the dimensions and
parasitic capacitances of the physical device which limits how fast it can
switch between off and on. During this transition time, the device will be
dissipating power in the form of heat. When the clock speed of a digital chip is
increased, the time spent in either off or on states decreases but the
transition time remains the same. Thus as the speed increases, the ratio of
steady-state to transition-state decreases and more power is lost to heat. This
is one of the primary reasons that over-clocking a computer’s CPU usually
requires greater measures to be taken to cool the chip.
Now we know how and why
devices dissipate heat, so how do we control it? Just as there are good
conductors of electricity, there are good conductors of heat. Materials such as
copper and aluminum are excellent
conductors of heat and are used as devices called heatsinks to help move heat
from a semiconductor to the air quickly, preventing thermal damage to the chip.
The more surface area a heatsink has, the faster it can transfer heat to the
air. The picture below depicts a pair of heatsinks; the fins on the heatsinks
are what increase the surface area.
The comparison of electrical conductors to heat conductors is no accident, and the equations governing both are analogous: Ohm’s Law --> Voltage = Resistance * Current Temperature Rise --> delta Temperature = Thermal Resistance * Power Dissipation or, using the standard variable designations:
For example, the voltage
regulator from earlier was giving us 5 Volts from a 12 Volt supply at 1 Amp,
dissipating 7 Watts in so doing. A LM7805 would be a typical device that would
accomplish this, but what kind of heatsink do we need to help the regulator
dissipate that 7 Watts? Checking the datasheet for the LM7805 (available via a
quick Google search) we see that the thermal resistance from the semiconductor
junction to the external case of the device is 5 degrees Celsius per Watt, and
the resistance from junction to ambient air is 65 degrees Celsius per Watt.
Using our temperature
equation and the specifications from the datasheet we see that:
Thus the MINIMUM thermal
resistance we need in a heatsink will be 9.29 C/W; however in engineering we
always want to give ourselves a margin of error, in this case lets go with 20%. This means we actually need to find a
heatsink with a thermal resistance of not more than 7.43 C/W. At this point we
can go to an electronics part distributor website such as Mouser or Digikey and search for heatsink that will fit a TO-220
case and have the right thermal resistance. I quickly found part No.
532-504222B00 from Mouser which has a thermal resistance of 6.4 C/W; this will
work perfectly for our application. When attaching the heatsink it is important
to use thermal compound between the case and heatsink. This is because it will
fill up any tiny pockets of air that may be between the two and cause an
increase in thermal resistance- we definitely don't want that.
Heat is something any
engineer, regardless of discipline, will encounter in their career. It is
important to recognize the limitations of your hardware and be able to
compensate using the appropriate heatsink. Datasheets will always be your
friend as you crunch numbers to try and discern what the best course of cooling
will be in your particular situation, and remembering to give yourself a margin
of error will set you up for success.