Relays
A relay is a simple electromechanical switch made up of an electromagnet and a set of contacts. Relays are found hidden in all sorts of devices. In fact, some of the first computers ever built used relays to implement Boolean gates.
Relay Construction
Relays are amazingly simple devices. There are four parts in every relay: 1. Electromagnet 2. Armature that can be attracted by the electromagnet 3. Spring 4. Set of electrical contacts The following figure shows these four parts in action:
In this figure, you can see that a relay consists of two separate and completely independent circuits. The first is at the bottom and drives the electromagnet. In this circuit, a switch is controlling power to the electromagnet. When the switch is on, the electromagnet is on, and it attracts the armature (blue). The armature is acting as a switch in the second circuit. When the electromagnet is energized, the armature completes the second circuit and the light is on. When the electromagnet is not energized, the spring pulls the armature away and the circuit is not complete. In that case, the light is dark. Let's start with an inverter. Implementing a NOT gate with a relay is easy: What we are going to do is use voltages to represent bit states. We will define a binary 1 to be 6 volts and a binary 0 to be zero volts (ground). Then we will use a 6-volt battery to power our circuits. Our NOT gate will therefore look like this:
Here you can see that if you apply 6 volts to A and B, Q will have 6 volts. Otherwise, Q will have zero volts. That is exactly the behavior we want from an AND gate. An OR gate is even simpler -- just hook two wires for A and B together to create an OR. You can get fancier than that if you like and use two relays in parallel. You can see from this discussion that you can create the three basic gates -- NOT, AND and OR -- from relays. You can then hook those physical gates together using the logic diagrams shown above to create a circuit to do whatever you like. Boolean logic in the form of simple gates is very straightforward. From simple gates you can create more complicated functions, like addition. Physically implementing the gates is possible and easy. From those three facts you have the heart of the digital revolution, and you understand, at the core, how computers work.