Analog design
As mentioned earlier, an analog circuit takes an infinitely variable real-world voltage or current and modifies it in some useful way. The signal might be amplified, compared with another signal, mixed with other signals, separated from other signals, examined for value, or otherwise manipulated. For the design of this type of circuit, the choice of every individual component, size, placement, and connection is crucial. Unique decisions abound—for instance, whether one connection should be slightly wider than another connection, whether one resistor should be oriented parallel or perpendicular to another, or whether one wire can lie over the top of another. Every small detail affects the final performance of the end product.
When integrated circuits were much simpler, component values could be calculated by hand. For instance, a specific amplification value (gain) of an amplifier could typically be calculated from the ratio of two specific resistors. The current in the circuit could then be determined, using the resistor value required for the amplifier gain and the supply voltage used. As designs became more complex, laboratory measurements were used to characterize the devices. Engineers drew graphs of device characteristics across several variables and then referred to those graphs as they needed information for their calculations. As scientists improved their characterization of the intricate physics of each device, they developed complex equations that took into account subtle effects that were not apparent from coarse laboratory measurements. For example, a transistor works very differently at different frequencies, sizes, orientations, and placements. In particular, scientists found parasitic components (unwanted effects, usually resistance and capacitance) that are inherent in the way the devices are built. Parasitics become more problematic as the circuitry becomes more sophisticated and smaller and as it runs at higher frequencies.
Although parasitic components in a circuit can now be accounted for by sophisticated equations, such calculations are very time-consuming to do by hand. For this work computers have become indispensable. In particular, a public-domain circuit-analysis program developed at the University of California, Berkeley, during the 1970s, SPICE (Simulation Program with Integrated Circuit Emphasis), and various proprietary models designed for use with it are ubiquitous in engineering courses and in industry for analog circuit design. SPICE has equations for transistors, capacitors, resistors, and other components, as well as for lengths of wires and for turns in wires, and it can reduce the calculation of circuit interactions to hours from the months formerly required for hand calculations.