Object-oriented languages

Object-oriented languages help to manage complexity in large programs. Objects package data and the operations on them so that only the operations are publicly accessible and internal details of the data structures are hidden. This information hiding made large-scale programming easier by allowing a programmer to think about each part of the program in isolation. In addition, objects may be derived from more general ones, “inheriting” their capabilities. Such an object hierarchy made it possible to define specialized objects without repeating all that is in the more general ones.

Object-oriented programming began with the Simula language (1967), which added information hiding to ALGOL. Another influential object-oriented language was Smalltalk (1980), in which a program was a set of objects that interacted by sending messages to one another.

C++

The C++ language, developed by Bjarne Stroustrup at AT&T in the mid-1980s, extended C by adding objects to it while preserving the efficiency of C programs. It has been one of the most important languages for both education and industrial programming. Large parts of many operating systems, such as the Microsoft Corporation’s Windows 98, were written in C++.

Ada

Ada was named for Augusta Ada King, countess of Lovelace, who was an assistant to the 19th-century English inventor Charles Babbage, and is sometimes called the first computer programmer. Ada, the language, was developed in the early 1980s for the U.S. Department of Defense for large-scale programming. It combined Pascal-like notation with the ability to package operations and data into independent modules. Its first form, Ada 83, was not fully object-oriented, but the subsequent Ada 95 provided objects and the ability to construct hierarchies of them. While no longer mandated for use in work for the Department of Defense, Ada remains an effective language for engineering large programs.

Java

In the early 1990s, Java was designed by Sun Microsystems, Inc., as a programming language for the World Wide Web (WWW). Although it resembled C++ in appearance, it was fully object-oriented. In particular, Java dispensed with lower-level features, including the ability to manipulate data addresses, a capability that is neither desirable nor useful in programs for distributed systems. In order to be portable, Java programs are translated by a Java Virtual Machine specific to each computer platform, which then executes the Java program. In addition to adding interactive capabilities to the Internet through Web “applets,” Java has been widely used for programming small and portable devices, such as mobile telephones.