Conversions from One Base to Another

Number system conversion

There are many methods or techniques which can be used to convert numbers from one base to another. We'll demonstrate here the following −

Decimal to Other Base System

Steps

·        Step 1 − Divide the decimal number to be converted by the value of the new base.

·        Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base number.

·        Step 3 − Divide the quotient of the previous divide by the new base.

·        Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base number.

Example −

Decimal Number: 2910

Calculating Binary Equivalent −

Step

Operation

Result

Remainder

Step 1

29 / 2

14

1

Step 2

14 / 2

7

0

Step 3

7 / 2

3

1

Step 4

3 / 2

1

1

Step 5

1 / 2

0

1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder becomes the Least Significant Digit (LSD) and the last remainder becomes the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

Steps

·        Step 1 − Determine the column (positional) value of each digit (this depends on the position of the digit and the base of the number system).

·        Step 2 − Multiply the obtained column values (in Step 1) by the digits in the corresponding columns.

·        Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent −

Step

Binary Number

Decimal Number

Step 1

111012

((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2

111012

(16 + 8 + 4 + 0 + 1)10

Step 3

111012

2910

Binary Number − 111012 = Decimal Number − 2910

Other Base System to Non-Decimal System

Steps

·        Step 1 − Convert the original number to a decimal number (base 10).

·        Step 2 − Convert the decimal number so obtained to the new base number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step

Octal Number

Decimal Number

Step 1

258

((2 × 81) + (5 × 80))10

Step 2

258

(16 + 5 )10

Step 3

258

2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step

Operation

Result

Remainder

Step 1

21 / 2

10

1

Step 2

10 / 2

5

0

Step 3

5 / 2

2

1

Step 4

2 / 2

1

0

Step 5

1 / 2

0

1

Decimal Number − 2110 = Binary Number − 101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Octal

Steps

·        Step 1 − Divide the binary digits into groups of three (starting from the right).

·        Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent −

Step

Binary Number

Octal Number

Step 1

101012

010 101

Step 2

101012

28 58

Step 3

101012

258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

·        Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).

·        Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example

Octal Number − 258

Calculating Binary Equivalent −

Step

Octal Number

Binary Number

Step 1

258

210 510

Step 2

258

0102 1012

Step 3

258

0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

·        Step 1 − Divide the binary digits into groups of four (starting from the right).

·        Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent −

Step

Binary Number

Hexadecimal Number

Step 1

101012

0001 0101

Step 2

101012

110 510

Step 3

101012

1516

Binary Number − 101012 = Hexadecimal Number − 1516

Shortcut method - Hexadecimal to Binary

Steps

·        Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be treated as decimal for this conversion).

·        Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent −

Step

Hexadecimal Number

Binary Number

Step 1

1516

110 510

Step 2

1516

00012 01012

Step 3

1516

000101012

Hexadecimal Number − 1516 = Binary Number − 101012