10 TYPES OF GEOSYNTHETICS USED FOR GROUND IMPROVEMENT
Long ago, when difficult sites for construction purposes were to be dealt, the conventional practice was limited to either the replacement of unsuitable soils or adopting suitable foundation which sometimes increases the cost of foundations. Innovative soil modification approaches are evolved to solve soil related problems. One among them is the usage of geo-synthetics. When used to enhance the soil strength they have following advantages.
· They are space savings,
· Better material quality control,
· Better construction quality control,
· Cost savings,
· Technical superiority,
· Construction time saving,
· Material deployment,
· Material availability,
· Environmental sensitivity.
10 different types of geosynthetics are given below.
Geo-grids are plastics formed into a very open netlike configuration. Single or Multi-layer materials are usually made from extruding and stretching high density polyethylene or by weaving or knitting the polypropylene. The resulting grid structure possesses large openings called apertures. These apertures enhance the interaction with the soil and aggregate. It is a good soil and aggregate reinforcement due to its good tensile strength and stiffness.
Geosynthetic clay liners (GCLs) include a thin layer of finely-ground bentonite clay. The clay swells and becomes a very effective hydraulic barrier when wetted. GCLs are manufactured by sandwiching the bentonite within or layering it on geotextiles and/or geomembranes. The bondings of the layers are done with stitching, needling and/or chemical adhesives.
· It is used within soil embankments built over soft, weak soils
· Used under roads, airfield pavements and railway track systems which are subjected to excessive freeze-thaw conditions
· Used beneath on-grade storage tanks containing cold liquids.
Another significant product which has been adopted as a geosynthetic is the plastic pipe. The specific polymer resins that are used in the manufacturing of plastic pipes are high-density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP), polybutylene (PB), acrylonitrile butadiene styrene (ABS), and cellulose acetate buytrate (CAB). There is a wide variety of civil engineering applications for these products. These include leachate removal systems, interceptor drains, and highway and railway edge drains.
Turf reinforcement mats (TRMs) are 3-dimensional structures composed of fused polymer nettings, randomly laid monofilaments, or yarns woven or tufted into an open and dimensionally stable mat. Erosion protection can be increased by applying these Mats, which can provide more protection compared to that of plants grown normally. Proven performance has resulted in the broad use and ensured the acceptance of TRMs as a permanent, cost effective and environmentally friendly alternative to hard armor erosion protection solutions such as concrete and riprap.
3-D honey comb like structures filled with soil, rock and concrete. They are made of strips of polymer sheets/ geotextiles, connected at staggered points in order to form a large honey comb mat when its strips are pulled apart. Geo-cells were manufactured from a novel polymeric alloy called Neoloy. The geocell with a higher elastic modulus has stiffness of the reinforced base and a higher bearing capacity. Geo-cells made from NPA are found to be significantly better in stiffness, ultimate bearing capacity and reinforcement relative to geocells made from HDPE. NPA geocells show better creep resistance and better retention of creep resistance and stiffness particularly at elevated temperatures, as verified by plate load testing and numerical modeling. A full scale research demonstrated that NPA geocells have a lower thermal expansion coefficient and creep reduction factor. It showed a higher tensile stiffness and strength than HDPE geocells and NPA geocells increased the bearing capacity and reduced settlement of compacted sand base courses significantly more than geocells fabricated from HDPE.