Rigid pavement design

As the name implies, rigid pavements are rigid i.e, they do not flex much under loading like flexible pavements. They are constructed using cement concrete. In this case, the load carrying capacity is mainly due to the rigidity ad high modulus of elasticity of the slab (slab action). H. M. Westergaard is considered the pioneer in providing the rational treatment of the rigid pavement analysis.

Modulus of sub-grade reaction

Westergaard considered the rigid pavement slab as a thin elastic plate resting on soil sub-grade, which is assumed as a dense liquid. The upward reaction is assumed to be proportional to the deflection. Base on this assumption, Westergaard defined a modulus of sub-grade reaction Description: $K$ in kg/cmDescription: $^3$ given by Description: $K=\frac{p}{\Delta}$ where Description: $\Delta$ is the displacement level taken as 0.125 cm and Description: $p$ is the pressure sustained by the rigid plate of 75 cm diameter at a deflection of 0.125 cm.

Relative stiffness of slab to sub-grade

A certain degree of resistance to slab deflection is offered by the sub-grade. The sub-grade deformation is same as the slab deflection. Hence the slab deflection is direct measurement of the magnitude of the sub-grade pressure. This pressure deformation characteristics of rigid pavement lead Westergaard to the define the term radius of relative stiffness Description: $l$ in cm is given by the equation Description: [*].

Description: \begin{displaymath}
l = \sqrt[4]{\frac{Eh^3}{12K(1-\mu^2)}}
\end{displaymath}

(1)


where E is the modulus of elasticity of cement concrete in kg/cmDescription: $^2$ (3.0Description: $\times$10Description: $^5$), Description: $\mu$ is the Poisson's ratio of concrete (0.15), Description: $h$ is the slab thickness in cm and Description: $K$ is the modulus of sub-grade reaction.

Critical load positions

Since the pavement slab has finite length and width, either the character or the intensity of maximum stress induced by the application of a given traffic load is dependent on the location of the load on the pavement surface. There are three typical locations namely the interior, edge and corner, where differing conditions of slab continuity exist. These locations are termed as critical load positions.

Equivalent radius of resisting section

When the interior point is loaded, only a small area of the pavement is resisting the bending moment of the plate. Westergaard's gives a relation for equivalent radius of the resisting section in cm in the equation Description: [*].

Description: \begin{displaymath}
b=\left\{\begin{array}{ll}\sqrt{1.6a^2+h^2}-0.675 h&\mathrm{if} a<1.724 h\ a&\mathrm{otherwise}\end{array}\right.
\end{displaymath}

(2)


where Description: $a$ is the radius of the wheel load distribution in cm and Description: $h$ is the slab thickness in cm.

Wheel load stresses - Westergaard's stress equation

The cement concrete slab is assumed to be homogeneous and to have uniform elastic properties with vertical sub-grade reaction being proportional to the deflection. Westergaard developed relationships for the stress at interior, edge and corner regions, denoted as Description: $\sigma_i, \sigma_e, \sigma_c$ in kg/cmDescription: $^2$ respectively and given by the equation Description: [*]-Description: [*].

Description: \begin{displaymath}
\sigma_i=\frac{0.316 P}{h^2}\left[4 \log_{10}\left(\frac{l}{b}\right)+1.069\right]
\end{displaymath}

(3)


Description: \begin{displaymath}
\sigma_e=\frac{0.572 P}{h^2}\left[4 \log_{10}\left(\frac{l}{b}\right)+0.359\right]
\end{displaymath}

(4)


Description: \begin{displaymath}
\sigma_c=\frac{3 P}{h^2}\left[1-\left(\frac{a\sqrt{2}}{l}\right)^{0.6}\right]
\end{displaymath}

(5)


where Description: $h$ is the slab thickness in cm, Description: $P$ is the wheel load in kg, Description: $a$ is the radius of the wheel load distribution in cm, Description: $l$ the radius of the relative stiffness in cm and Description: $b$ is the radius of the resisting section in cm

Description: \begin{figure}\centerline{\epsfig{file=p24-rigid-pavement-stress-locations,width=7cm}}%
\end{figure}

Figure: Critical stress locations

Temperature stresses

Temperature stresses are developed in cement concrete pavement due to variation in slab temperature. This is caused by

(i)                daily variation resulting in a temperature gradient across the thickness of the slab and

(ii)              seasonal variation resulting in overall change in the slab temperature. The former results in warping stresses and the later in frictional stresses.

Warping stress

The warping stress at the interior, edge and corner regions, denoted as Description: $\sigma_{t_i}, \sigma_{t_e}, \sigma_{t_c}$ in kg/cmDescription: $^2$ respectively and given by the equation Description: [*]-Description: [*].

Description: \begin{displaymath}
\sigma_{t_i} = \frac{E\epsilon t}{2} \left( \frac{C_x + \mu
C_y}{1-\mu^2}\right)
\end{displaymath}

(6)


Description: \begin{displaymath}
\sigma_{t_e} = \mathrm{Max }\left(\frac{C_x E \epsilon t}{2} , \frac{C_y E
\epsilon t}{2} \right)
\end{displaymath}

(7)


Description: \begin{displaymath}
\sigma_{t_c} = \frac{E \epsilon t}{3(1-\mu)}{\sqrt{\frac{a}{l}}}
\end{displaymath}

(8)


where Description: $E$ is the modulus of elasticity of concrete in kg/cmDescription: $^2$ (3Description: $\times$10Description: $^5$), Description: $\epsilon$ is the thermal coefficient of concrete per Description: $^o$C (1Description: $\times$10Description: $^{-7}$Description: $t$is the temperature difference between the top and bottom of the slab, Description: $C_x$ and Description: $C_y$ are the coefficient based on Description: $L_x/l$ in the desired direction and Description: $L_y/l$ right angle to the desired direction, Description: $\mu$ is the Poisson's ration (0.15), Description: $a$ is the radius of the contact area and Description: $l$ is the radius of the relative stiffness.

Frictional stresses

The frictional stress Description: $\sigma_f$ in kg/cmDescription: $^2$ is given by the equation

Description: \begin{displaymath}
\sigma_f = \frac{WLf}{2\times10^4}
\end{displaymath}

(9)


where Description: $W$ is the unit weight of concrete in kg/cmDescription: $^2$ (2400), Description: $f$ is the coefficient of sub grade friction (1.5) and Description: $L$ is the length of the slab in meters.

Combination of stresses

The cumulative effect of the different stress give rise to the following thee critical cases

Design of joints

Expansion joints

The purpose of the expansion joint is to allow the expansion of the pavement due to rise in temperature with respect to construction temperature. The design consideration are:

Description: \begin{figure}\centerline{\epsfig{file=p26-rigid-pavement-expansion-joint,width=7cm}}\end{figure}

Figure: Expansion joint

Contraction joints

The purpose of the contraction joint is to allow the contraction of the slab due to fall in slab temperature below the construction temperature. The design considerations are:

Description: \begin{displaymath}
L_c=\frac{2\times10^4S_c}{W.f}
\end{displaymath}

(10)

Description: \begin{figure}\centerline{\epsfig{file=p27-rigid-pavement-contraction-joint,width=7cm}}\end{figure}

Figure: Contraction joint

Dowel bars

The purpose of the dowel bar is to effectively transfer the load between two concrete slabs and to keep the two slabs in same height. The dowel bars are provided in the direction of the traffic (longitudinal). The design considerations are:

Bradbury's analysis

Bradbury's analysis gives load transfer capacity of single dowel bar in shear, bending and bearing as follows:

Description: $\displaystyle P_s$

Description: $\textstyle =$

Description: $\displaystyle 0.785 d^2 F_s$

(11)

Description: $\displaystyle P_f$

Description: $\textstyle =$

Description: $\displaystyle \frac{2 d^3 F_f}{L_d+8.8\delta}$

(12)

Description: $\displaystyle P_b$

Description: $\textstyle =$

Description: $\displaystyle \frac{F_b L_d^2 d}{12.5 (L_d+1.5\delta)}$

(13)


where, Description: $P$ is the load transfer capacity of a single dowel bar in shear Description: $s$, bending Description: $f$ and bearing Description: $b$Description: $d$ is the diameter of the bar in cm, Description: $L_d$ is the length of the embedment of dowel bar in cm, Description: $\delta$ is the joint width in cm, Description: $F_s, Ff, F_b$ are the permissible stress in shear, bending and bearing for the dowel bar in kg/cmDescription: $^2$.

Design procedure

Step  Find the length of the dowel bar embedded in slab Description: $L_d$ by equating Eq. Description: [*]=Eq. Description: [*], i.e.

Description: \begin{displaymath}
L_d=5d \sqrt{\frac{F_f}{F_b}\frac{(L_d+1.5\delta)}{(L_d+8.8\delta)}}
\end{displaymath}

(14)


Step  Find the load transfer capacities Description: $P_s$Description: $P_f$, and Description: $P_b$ of single dowel bar with the Description: $L_d$

Step  Assume load capacity of dowel bar is 40 percent wheel load, find the load capacity factor f as

Description: \begin{displaymath}
\max\left\{\frac{0.4P}{P_s}, \frac{0.4P}{P_f}, \frac{0.4P}{P_b}\right\}
\end{displaymath}

(15)


Step  Spacing of the dowel bars.

Example

Design size and spacing of dowel bars at an expansion joint of concrete pavement of thickness 25 cm. Given the radius of relative stiffness of 80 cm. design wheel load 5000 kg. Load capacity of the dowel system is 40 percent of design wheel load. Joint width is 2.0 cm and the permissible stress in shear, bending and bearing stress in dowel bars are 1000,1400 and 100 Description: $kg/cm^2$ respectively.

Solution:

Given, Description: $P=5000 kg$Description: $l=80 cm$Description: $h=25 cm$Description: $\delta=2 cm$Description: $F_s=1000 kg/cm^2$Description: $F_f=1400 kg/cm^2$ and Description: $F_b=100 kg/cm^2$; and assume Description: $d=2.5 cm$ diameter.

Step-1: length of the dowel bar Description: $L_d$ 

Description: \begin{eqnarray*}
L_d&=&5\times2.5 \sqrt{\frac{1400}{100}\frac{(L_d+1.5\times{2}...
...imes{2})}}\\
&=&12.5\times \sqrt{14 \frac{(L_d+3)}{(L_d+17.6)}}
\end{eqnarray*}


Solve for Description: $L_d$ by trial and error:

put Description: $L_d=45.00 \Rightarrow{}L_d=40.95$ put Description: $L_d=45.95 \Rightarrow{}L_d=40.50$ put Description: $L_d=45.50 \Rightarrow{}L_d=40.50$ Minimum length of the dowel bar is Description: $L_d+\delta = 40.5+2.0 = 42.5 cm$, So, provide Description: $45 cm$ long and Description: $2.5 cm \phi$. Therefore Description: $L_d=45-2=43 cm$.

Step 2: Find the load transfer capacity of single dowel bar

Description: \begin{eqnarray*}
P_s=&0.785\times2.5^2\times1000&= 4906 kg\\
P_f=&\frac{2\time...
...rac{100\times2.5\times43.0^2}{12.5 (43.0+1.5\times{2})}&= 804 kg
\end{eqnarray*}


Therefore, the required load transfer capacity

Description: \begin{eqnarray*}
\max\left\{\frac{0.4\times{5000}}{4906}, \frac{0.4\times{5000}...
...000}}{804}\right\}\\
\max\left\{0.41,2.77,2.487\right\}=2.77\\
\end{eqnarray*}


Step-3 : Find the required spacing: Effective distance of load transfer Description: $=1.8 l = 1.8\times{80} = 144 cm$. Assuming Description: $35 cm$ spacing,

Actual capacity is

Description: \begin{eqnarray*}
1+\frac{144-35}{144}+\frac{144-70}{144}+\frac{144-105}{144}+\f...
...144-140}{144}\\
=2.57 < 2.77   (\mathrm{the required capacity})
\end{eqnarray*}


Therefore assume Description: $30 cm$ spacing and now the actual capacity is

Description: \begin{eqnarray*}
1+\frac{144-30}{144}+\frac{144-60}{144}+\frac{144-90}{144}+\frac{144-120}{144}\\
=2.92 > 2.77   (\mathrm{the required capacity})
\end{eqnarray*}


Therefore provide Description: $2.5 cm \phi$ mild steel dowel bars of length Description: $45 cm @ 30 cm $ center to center.

Tie bars

In contrast to dowel bars, tie bars are not load transfer devices, but serve as a means to tie two slabs. Hence tie bars must be deformed or hooked and must be firmly anchored into the concrete to function properly. They are smaller than dowel bars and placed at large intervals. They are provided across longitudinal joints.

Step  Diameter and spacing: The diameter and the spacing is first found out by equating the total sub-grade friction tot he total tensile stress for a unit length (one meter). Hence the area of steel per one meter in Description: $cm^2$ is given by:

Description: $\displaystyle A_s\times{}S_s=b\times{}h\times{}W\times{}f$

 

 

 

Description: $\displaystyle A_s=\frac{bhWf}{100S_s}$

 

 

(16)


where, Description: $b$ is the width of the pavement panel in Description: $m$Description: $h$ is the depth of the pavement in Description: $cm$Description: $W$ is the unit weight of the concrete (assume Description: $2400 kg/cm^2$), Description: $f$ is the coefficient of friction (assume Description: $1.5$), and Description: $S_s$ is the allowable working tensile stress in steel (assume Description: $1750 kg/cm^2$). Assume Description: $0.8$ to Description: $1.5 cm \phi$ bars for the design.

Step  Length of the tie bar: Length of the tie bar is twice the length needed to develop bond stress equal to the working tensile stress and is given by:

Description: $\displaystyle L_t=\frac{d S_s}{2 S_b}$

 

 

(17)


where, Description: $d$ is the diameter of the bar, Description: $S_s$ is the allowable tensile stress in Description: $kg/cm^2$, and Description: $S_b$ is the allowable bond stress and can be assumed for plain and deformed bars respectively as Description: $17.5$ and Description: $24.6 kg/cm^2$.

Example

A cement concrete pavement of thickness 18 cm, has two lanes of 7.2 m with a joint. Design the tie bars.     (Solution:)  Given h=18 cm, b=7.2/2=3.6m, Description: $S_s=1700 kg/cm^2$ Description: $W=2400 kg/cm^2$ Description: $f=1.5$ Description: $S_b=24.6 kg/cm^2$.     Step 1: diameter and spacing: Get Description: $A_s$from

Description: \begin{eqnarray*}
A_s=\frac{3.6\times{}18\times{}2400\times{}1.5}{100\times{}1750}=1.33 cm^2/m
\end{eqnarray*}


Assume Description: $\phi=1 cm, \Rightarrow A=0.785 cm^2$. Therefore spacing is Description: $\frac{100\times{}0.785}{1.33}=59 cm$, say Description: $55 cm$     Step 2: Length of the bar: Get Description: $L_t$ from

Description: \begin{eqnarray*}
L_t=\frac{1\times{}1750}{2 246} = 36.0 cm
\end{eqnarray*}


[Ans] Use Description: $1 cm \phi$ tie bars of length of Description: $36 cmi @ 55 cm c/c$

Summary

Design of rigid pavements is based on Westergaard's analysis, where modulus of subgrade reaction, radius of relative stiffness, radius of wheel load distribution are used. For critical design, a combination of load stress, frictional stress and warping stress is considered. Different types of joints are required like expansion and contraction joints. Their design is also dealt with.