Sinkholes are a phenomenon that tend to baffle and frighten most people. How is it possible that the ground beneath our feet could just drop? How do we know if we’re nearby a sinkhole? What should we do if we see one? How are sinkholes fixed? The mystery of the unknown around sinkholes can be quite unnerving.
Have no fear, we’ve got answers to all of those questions and more! In this two-part blog series, our experts share their knowledge and provide important information about this scary occurrence. In part one, we provide a detailed look at what a sinkhole is, three different types of sinkholes, and what causes them to form. In part two, we explore how to detect sinkholes and the steps taken to repair them.
Sinkholes are a common phenomenon around the world. They result from both man-made and natural causes. Marshall Thomas, a Princeton Hydro geologist, describes sinkholes as “depressions observed from the surface, caused by dissolution of carbonate rocks.” In other words, sinkholes form when the rock below the land surface gets dissolved by water that penetrates the surface and continues to move downward, further into the subsurface.
Most common in areas with “karst terrain,” or types of rocks that can easily be dissolved by groundwater, sinkholes can go undetected for years until the space underneath the surface gets too big or enough of the surface soil is washed away. Sometimes the holes are small, measuring a few feet wide and ten feet deep. Sometimes the holes are hundreds of miles wide and deep. However, all of them can be dangerous.
Sinkholes are found throughout the world. States like Pennsylvania, Texas, Florida, Alabama, Tennessee, and Missouri are at higher risk for sinkholes because they tend to have more soluble rocks like salt beds and domes, gypsum, limestone, and other carbonate rocks. People living in these states are recommended to have professionals look at any property they intend to buy to make sure it isn’t in an area above soluble rock.
Not all sinkholes are the scary, earth-falling-out-from-underneath-your-feet events. Some occur slowly over time and are very evident from the surface. Geologists classify sinkholes in three major types. Their formation is determined by the same geological processes, barring a few differences. Let’s dive in!
1. Dissolution Sinkholes
Dissolution sinkholes start to form when limestone or dolomite is very close to the soil surface, usually covered by a thin layer of soil and permeable sand which washes away or is eroded. Rain and stormwater runoff gradually percolate through crevices in the rock, dissolving it. Consequently, a bowl-shaped depression slowly forms.
Sometimes, dissolution sinkholes become ponds when the depression gets lined with debris, which traps water inside. Dissolution sinkholes develop gradually and are normally not dangerous. However, the ones that become ponds can drain abruptly if water breaks through the protective bottom layer.
Fun fact: Most of Florida’s lakes are actually just large sinkholes that filled up with water!
2. Cover-Subsidence Sinkholes
This type of sinkhole, which starts with the dissolution of the underlying carbonate bedrock, occurs where the covering sediment is permeable (water can pass through it) and contains sand. First, small pieces of sediment split into smaller pieces and fall into openings in the carbonate rock underneath the surface. With time, in a process called piping, the small particles settle into the open spaces. This continues, eventually forming a dip in the surface ranging from one inch to several feet in depth and diameter. Again, these aren’t the sinkholes movies are made about.
3. Cover-Collapse Sinkholes
This type of sinkhole is the one making headlines and causing fear. In order for cover-collapse sinkholes to happen, the covering soil has to be cohesive, contain a lot of clay and the bedrock has to be carbonate. Similar to the cover-subsidence sinkholes, the cohesive soil erodes into a cavity in the bedrock. The difference with this is that the clay-filled top surface appears to remain intact from above. However, underneath, a hollowed out, upside down bowl shape forms. That hollowing gets bigger and bigger over time until eventually, the cavity reaches the ground surface, causing the sudden and dramatic collapse of the ground. Just like that, poof, we have a sinkhole that appears to be surprising and abrupt but really has been brewing for many years.
Sinkholes can be natural or man-made. The most common causes of a sinkhole are changes in groundwater levels or a sudden increase in surface water.
Intensive rain events can increase the likelihood of a sinkhole collapse. Alternatively, drought, which causes groundwater levels to significantly decrease, can also lead to a greater risk of collapse of the ground above. In a world with a greater variability in rainfall and drought events due to climate change, sinkholes may become a more common occurrence around the world.
Humans are also responsible for the formation of sinkholes. Activities like drilling, mining, construction, broken water or drain pipes, improperly compacted soil after excavation work, or even significantly heavy traffic (heavy weight on soft soil) can result in small to large sinkholes. Water from broken pipes can penetrate through mud and rocks and erode the ground underneath and cause sinkholes.
Most commonly, human-caused sinkholes are the result of:
· Land-use practices like groundwater pumping, construction, and development
· Changing of natural water-drainage patterns
· Development of new water-diversion systems
· Major land surface changes, causing substantial weight changes
In some cases, human-induced sinkholes occur when an already forming sinkhole is encountered during construction processes such as excavation for stormwater basins and foundations. Dissolution of bedrock generally occurs in geologic time-frames (thousands of years). In these cases, the excavation process has removed the covering soils, decreasing the distance between the top of the void and the ground surface.
In other cases, voids in the bedrock are generated due to rock removal processes such as hammering and blasting. Hammering and blasting can generate fractures or cracks in the bedrock that soil can then erode into. A void in the bedrock may already exist, however, the process of removing the bedrock by hammering and/or blasting can speed up the meeting of the upside-down bowl and the surface that much quicker. One site where this happened has experienced over 35 sinkholes in 4 years.
Overall, it’s generally not a good idea to pump groundwater or do major excavation in areas that are prone to sinkholes. According to the USGS, over the last 15 years sinkhole damages have cost on average at least $300 million per year. Because there is no national tracking of sinkhole damage costs, this estimate is probably much lower than the actual cost. Being more mindful about the subsurface around us and our actions could help lower the average yearly cost in damages and even save lives.