Mining

 

Mining, process of extracting useful minerals from the surface of the Earth, including the seas. A mineral, with a few exceptions, is an inorganic substance occurring in nature that has a definite chemical composition and distinctive physical properties or molecular structure. (One organic substance, coal, is often discussed as a mineral as well.) Ore is a metalliferous mineral, or an aggregate of metalliferous minerals and gangue (associated rock of no economic value), that can be mined at a profit. Mineral deposit designates a natural occurrence of a useful mineral, while ore deposit denotes a mineral deposit of sufficient extent and concentration to invite exploitation.

Typical development workings of an underground mine.

 

When evaluating mineral deposits, it is extremely important to keep profit in mind. The total quantity of mineral in a given deposit is referred to as the mineral inventory, but only that quantity which can be mined at a profit is termed the ore reserve. As the selling price of the mineral rises or the extraction costs fall, the proportion of the mineral inventory classified as ore increases. Obviously, the opposite is also true, and a mine may cease production because (1) the mineral is exhausted or (2) the prices have dropped or costs risen so much that what was once ore is now only mineral.

History

Archaeological discoveries indicate that mining was conducted in prehistoric times. Apparently, the first mineral used was flint, which, because of its conchoidal fracturing pattern, could be broken into sharp-edged pieces that were useful as scrapers, knives, and arrowheads. During the Neolithic Period, or New Stone Age (about 8000–2000 BCE), shafts up to 100 metres (330 feet) deep were sunk in soft chalk deposits in France and Britain in order to extract the flint pebbles found there. Other minerals, such as red ochre and the copper mineral malachite, were used as pigments. The oldest known underground mine in the world was sunk more than 40,000 years ago at Bomvu Ridge in the Ngwenya mountains, Swaziland, to mine ochre used in burial ceremonies and as body colouring.

Gold was one of the first metals utilized, being mined from streambeds of sand and gravel where it occurred as a pure metal because of its chemical stability. Although chemically less stable, copper occurs in native form and was probably the second metal discovered and used. Silver was also found in a pure state and at one time was valued more highly than gold.

 

According to historians, the Egyptians were mining copper on the Sinai Peninsula as long ago as 3000 BCE, although some bronze (copper alloyed with tin) is dated as early as 3700 BCE. Iron is dated as early as 2800 BCE; Egyptian records of iron ore smelting date from 1300 BCE. Found in the ancient ruins of Troy, lead was produced as early as 2500 BCE.

 

One of the earliest evidences of building with quarried stone was the construction (2600 BCE) of the great pyramids in Egypt, the largest of which (Khufu) is 236 metres (775 feet) along the base sides and contains approximately 2.3 million blocks of two types of limestone and red granite. The limestone is believed to have been quarried from across the Nile. Blocks weighing as much as 15,000 kg (33,000 pounds) were transported long distances and elevated into place, and they show precise cutting that resulted in fine-fitting masonry.

One of the most complete early treatments of mining methods in Europe is by the German scholar Georgius Agricola in his De re metallica (1556). He describes detailed methods of driving shafts and tunnels. Soft ore and rock were laboriously mined with a pick and harder ore with a pick and hammer, wedges, or heat (fire setting). Fire setting involved piling a heap of logs at the rock face and burning them. The heat weakened or fractured the rock because of thermal expansion or other processes, depending on the type of rock and ore. Crude ventilation and pumping systems were utilized where necessary. Hoisting up shafts and inclines was done with a windlass; haulage was in “trucks” and wheelbarrows. Timber support systems were employed in tunnels.

Great progress in mining was made when the secret of black powder reached the West, probably from China in the late Middle Ages. This was replaced as an explosive in the mid-19th century with dynamite, and since 1956 both ammonium nitrate fuel-blasting agents and slurries (mixtures of water, fuels, and oxidizers) have come into extensive use. A steel drill with a wedge point and a hammer were first used to drill holes for placement of explosives, which were then loaded into the holes and detonated to break the rock. Experience showed that proper placement of holes and firing order are important in obtaining maximum rock breakage in mines.

The invention of mechanical drills powered by compressed air (pneumatic hammers) increased markedly the capability to mine hard rock, decreasing the cost and time for excavation severalfold. It is reported that the Englishman Richard Trevithick invented a rotary steam-driven drill in 1813. Mechanical piston drills utilizing attached bits on drill rods and moving up and down like a piston in a cylinder date from 1843. In Germany in 1853 a drill that resembled modern air drills was invented. Piston drills were superseded by hammer drills run by compressed air, and their performance improved with better design and the availability of quality steel.

Developments in drilling were accompanied by improvements in loading methods, from handloading with shovels to various types of mechanical loaders. Haulage likewise evolved from human and animal portage to mine cars drawn by electric locomotives and conveyers and to rubber-tired vehicles of large capacity. Similar developments took place in surface mining, increasing the volume of production and lowering the cost of metallic and nonmetallic products drastically. Large stripping machines with excavating wheels used in surface coal mining are employed in other types of open-pit mines.

Water inflow was a very important problem in underground mining until James Watt invented the steam engine in the 18th century. After that, steam-driven pumps could be used to remove water from the deep mines of the day. Early lighting systems were of the open-flame type, consisting of candles or oil-wick lamps. In the latter type, coal oil, whale oil, or kerosene was burned. Beginning in the 1890s, flammable acetylene gas was generated by adding water to calcium carbide in the base of a lamp and then released through a jet in the centre of a bright metal reflector. A flint sparker made these so-called carbide lamps easy to light. In the 1930s battery-powered cap lamps began entering mines, and since then various improvements have been made in light intensity, battery life, and weight.

Although a great deal of mythic lore and romance has accumulated around miners and mining, in modern mining it is machines that provide the strength and trained miners who provide the brains needed to prevail in this highly competitive industry. Technology has developed to the point where gold is now mined underground at depths of 4,000 metres (about 13,100 feet), and the deepest surface mines have been excavated to more than 700 metres (about 2,300 feet).