There are three types of muscle in animal bodies: smooth, skeletal, and cardiac. They differ by the presence or absence of striations or bands, the number and location of nuclei, whether they are voluntarily or involuntarily controlled, and their location within the body. Table 14.4 summarizes these differences.
Table 14.4. |
||||
Types of Muscles |
||||
Type of Muscle |
Striations |
Nuclei |
Control |
Location |
smooth |
no |
single, in center |
involuntary |
visceral organs |
skeletal |
yes |
many, at periphery |
voluntary |
skeletal muscles |
cardiac |
yes |
single, in center |
involuntary |
heart |
Smooth muscle does not have striations in its cells. It has a single, centrally located nucleus, as shown in Figure 14.18. Constriction of smooth muscle occurs under involuntary, autonomic nervous control and in response to local conditions in the tissues. Smooth muscle tissue is also called non-striated as it lacks the banded appearance of skeletal and cardiac muscle. The walls of blood vessels, the tubes of the digestive system, and the tubes of the reproductive systems are composed of mostly smooth muscle.
Skeletal muscle has striations across its cells caused by the arrangement of the contractile proteins actin and myosin. These muscle cells are relatively long and have multiple nuclei along the edge of the cell. Skeletal muscle is under voluntary, somatic nervous system control and is found in the muscles that move bones. Figure 14.18 illustrates the histology of skeletal muscle.
Cardiac muscle, shown in Figure 14.18, is found only in the heart. Like skeletal muscle, it has cross striations in its cells, but cardiac muscle has a single, centrally located nucleus. Cardiac muscle is not under voluntary control but can be influenced by the autonomic nervous system to speed up or slow down. An added feature to cardiac muscle cells is a line than extends along the end of the cell as it abuts the next cardiac cell in the row. This line is called an intercalated disc: it assists in passing electrical impulse efficiently from one cell to the next and maintains the strong connection between neighboring cardiac cells.