Centromere and Chromosome Segregation

centromere is a region on a chromosome that joins sister chromatids. Sister chromatids are double-stranded, replicated chromosomes that form during cell division. The primary function of the centromere is to serve as a place of attachment for spindle fibers during cell division. The spindle apparatus elongates cells and separates chromosomes to ensure that each new daughter cell has the correct number of chromosomes at the completion of mitosis and meiosis.

The DNA in the centromere region of a chromosome is composed of tightly packed chromatin known as heterochromatin. Heterochromatin is very condensed and is therefore not transcribed. Due to its heterochromatin composition, the centromere region stains more darkly with dyes than the other regions of a chromosome.

 

Centromere Location

A centromere is not always located in the central area of a chromosome. A chromosome is comprised of a short arm region (p arm) and a long arm region (q arm) that are connected by a centromere region. Centromeres may be located near the mid-region of a chromosome or at a number of positions along the chromosome. ​

The position of the centromere is readily observable in a human karyotype of homologous chromosomes. Chromosome 1 is an example of a metacentric centromere, chromosome 5 is an example of a submetacentric centromere, and chromosome 13 is an example of an acrocentric centromere.

 

Chromosome Segregation in Mitosis

After cytokinesis (division of the cytoplasm), two distinct daughter cells are formed.

 

Chromosome Segregation in Meiosis

In meiosis, a cell goes through two stages of the dividing process. These stages are meiosis I and meiosis II.

Meiosis results in the division, separation, and distribution of chromosomes among four new daughter cells. Each cell is haploid, containing only half the number of chromosomes as the original cell.