What is Valance Bond (VB) Theory?

The metal bonding is essentially covalent in origin and metallic structure involves resonance of electron-pair bonds between each atom and its neighbors.

History of Valence Bond Theory

The Lewis approach to chemical bonding failed to shed light on the formation of chemical bonds. Also, valence shell electron pair repulsion theory (or VSEPR theory) had limited applications (and also failed in predicting the geometry corresponding to complex molecules).

In order to address these issues, the valence bond theory was put forth by the German physicists Walter Heinrich Heitler and Fritz Wolfgang London. The Schrodinger wave equation was also used to explain the formation of a covalent bond between two hydrogen atoms. The chemical bonding of two hydrogen atoms as per the valence bond theory is illustrated below.

This theory focuses on the concepts of electronic configuration, atomic orbitals (and their overlapping) and the hybridization of these atomic orbitals. Chemical bonds are formed from the overlapping of atomic orbitals wherein the electrons are localized in the corresponding bond region.

The valence bond theory also goes on to explain the electronic structure of the molecules formed by this overlapping of atomic orbitals. It also emphasizes that the nucleus of one atom in a molecule is attracted to the electrons of the other atoms.

Postulates of Valence Bond Theory

The important postulates of the valence bond theory are listed below.

  1. Covalent bonds are formed when two valence orbitals (half-filled) belonging to two different atoms overlap on each other. The electron density in the area between the two bonding atoms increases as a result of this overlapping, thereby increasing the stability of the resulting molecule.
  2. The presence of many unpaired electrons in the valence shell of an atom enables it to form multiple bonds with other atoms. The paired electrons present in the valence shell do not take participate in the formation of chemical bonds as per the valence bond theory.
  3. Covalent chemical bonds are directional and are also parallel to the region corresponding to the atomic orbitals that are overlapping.
  4. Sigma bonds and pi bonds differ in the pattern that the atomic orbitals overlap in, i.e. pi bonds are formed from sidewise overlapping whereas the overlapping along the axis containing the nuclei of the two atoms leads to the formation of sigma bonds.

The formation of sigma and pi bonds is illustrated below.

It can be noted that sigma bonds involve the head-to-head overlapping of atomic orbitals whereas pi bonds involve parallel overlapping.
Number of Orbitals and Types of Hybridization

According to VBT theory the metal atom or ion under the influence of ligands can use its (n-1)d, ns, np, or ns, np, nd orbitals for hybridization to yield a set of equivalent orbitals of definite geometry such as octahedral, tetrahedral, square planar and so on. These hybrid orbitals are allowed to overlap with ligand orbitals that can donate electron pairs for bonding.

Coordination Number

Type of Hybridisation

Distribution of Hybrid Orbitals in Space

4

sp3

Tetrahedral

4

dsp2

Square planar

5

sp3d

Trigonal bipyramidal

6

sp3d2

Octahedral

6

d2sp3

Octahedral

Applications of Valence Bond Theory

Limitations of Valence Bond Theory

The shortcomings of the valence bond theory include