Production and analysis of a spectrum usually require the following: (1) a source of light (or other electromagnetic radiation), (2) a disperser to separate the light into its component wavelengths, and (3) a detector to sense the presence of light after dispersion. The apparatus used to accept light, separate it into its component wavelengths, and detect the spectrum is called a spectrometer. Spectra can be obtained either in the form of emission spectra, which show one or more bright lines or bands on a dark background, or absorption spectra, which have a continuously bright background except for one or more dark lines.
Absorption spectroscopy measures the loss of electromagnetic energy after it illuminates the sample under study. For example, if a light source with a broad band of wavelengths is directed at a vapour of atoms, ions, or molecules, the particles will absorb those wavelengths that can excite them from one quantum state to another. As a result, the absorbed wavelengths will be missing from the original light spectrum after it has passed through the sample. Since most atoms and many molecules have unique and identifiable energy levels, a measurement of the missing absorption lines allows identification of the absorbing species. Absorption within a continuous band of wavelengths is also possible. This is particularly common when there is a high density of absorption lines that have been broadened by strong perturbations by surrounding atoms (e.g., collisions in a high-pressure gas or the effects of near neighbours in a solid or liquid).
In the laboratory environment, transparent chambers or containers with windows at both ends serve as absorption cells for the production of absorption spectra. Light with a continuous distribution of wavelength is passed through the cell. When a gas or vapour is introduced, the change in the transmitted spectrum gives the absorption spectrum of the gas. Often, absorption cells are enclosed in ovens because many materials of spectroscopic interest vaporize significantly only at high temperatures. In other cases, the sample to be studied need not be contained at all. For example, interstellar molecules can be detected by studying the absorption of the radiation from a background star.
The transmission properties of Earth’s atmosphere determine which parts of the electromagnetic spectrum of the Sun and other astronomical sources of radiation are able to penetrate the atmosphere. The absorption of ultraviolet and X-ray radiation by the upper atmosphere prevents this harmful portion of the electromagnetic spectrum from irradiating the inhabitants of Earth. The fact that water vapour, carbon dioxide, and other gases reflect infrared radiation is important in determining how much heat from Earth is radiated into space. This phenomenon is known as the greenhouse effect since it works in much the same way as the glass panes of a greenhouse; that is to say, energy in the form of visible light is allowed to pass through the glass, while heat in the form of infrared radiation is absorbed and reflected back by it, thus keeping the greenhouse warm. Similarly, the transmission characteristics of the atmosphere are important factors in determining the global temperature of Earth.
The second main type of spectroscopy, emission spectroscopy, uses some means to excite the sample of interest. After the atoms or molecules are excited, they will relax to lower energy levels, emitting radiation corresponding to the energy differences, ΔE = hν = hc/λ, between the various energy levels of the quantum system. In its use as an analytical tool, this fluorescence radiation is the complement of the missing wavelengths in absorption spectroscopy. Thus, the emission lines will have a characteristic “fingerprint” that can be associated with a unique atom, ion, or molecule. Early excitation methods included placing the sample in a flame or an electric-arc discharge. The atoms or molecules were excited by collisions with electrons, the broadband light in the excitation source, or collisions with energetic atoms. The analysis of the emission lines is done with the same types of spectrometer as used in absorption spectroscopy.