Content providers

content provider manages a shared set of app data that you can store in the file system, in a SQLite database, on the web, or on any other persistent storage location that your app can access. Through the content provider, other apps can query or modify the data if the content provider allows it. For example, the Android system provides a content provider that manages the user's contact information. As such, any app with the proper permissions can query the content provider, such as ContactsContract.Data, to read and write information about a particular person. It is tempting to think of a content provider as an abstraction on a database, because there is a lot of API and support built in to them for that common case. However, they have a different core purpose from a system-design perspective. To the system, a content provider is an entry point into an app for publishing named data items, identified by a URI scheme. Thus an app can decide how it wants to map the data it contains to a URI namespace, handing out those URIs to other entities which can in turn use them to access the data. There are a few particular things this allows the system to do in managing an app:

Content providers are also useful for reading and writing data that is private to your app and not shared. For example, the Note Pad sample app uses a content provider to save notes.

A content provider is implemented as a subclass of ContentProvider and must implement a standard set of APIs that enable other apps to perform transactions.

A unique aspect of the Android system design is that any app can start another app’s component. For example, if you want the user to capture a photo with the device camera, there's probably another app that does that and your app can use it instead of developing an activity to capture a photo yourself. You don't need to incorporate or even link to the code from the camera app. Instead, you can simply start the activity in the camera app that captures a photo. When complete, the photo is even returned to your app so you can use it. To the user, it seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process for that app if it's not already running and instantiates the classes needed for the component. For example, if your app starts the activity in the camera app that captures a photo, that activity runs in the process that belongs to the camera app, not in your app's process. Therefore, unlike apps on most other systems, Android apps don't have a single-entry point (there's no main () function).

Because the system runs each app in a separate process with file permissions that restrict access to other apps, your app cannot directly activate a component from another app. However, the Android system can. To activate a component in another app, deliver a message to the system that specifies your intent to start a particular component. The system then activates the component for you.