Frequency Analysis of Point Rainfall
Storms of high intensity and varying durations occur from time to time. However, the probability of these heavy rainfalls varies with locality. The first step in designing engineering projects dealing with flood control, gully control etc. is to determine the probability of occurrence of a particular extreme rainfall. This information is determined by the frequency analysis of point rainfall data. Frequency analysis deals with the chance of occurrence of an event over a specified period of time. Suppose, P is the probability of occurrence of an event (rainfall) whose magnitude is equal to or in excess of a specified magnitude X. The recurrence interval (return period) is related to P as follows:
Plotting Position Formulae
There are two methods for performing frequency analysis
· Empirical method
· Frequency factor method
The excedence probability of the event is obtained by the use of empirical formula, known as plotting position.
Several plotting position formulas were developed and some of them are given below:
Table 10.1. Plotting position formulae (Source: Subramanya, 2006)
m = rank assigned to the data after arranging them in descending order of magnitude
Thus the maximum value is assigned m =1, the second largest value (m =2), and the lowest value m =N.
N = number of records.
Weibull formula is the most commonly used plotting position formula.
· Having calculated P and T for all the events in the series, the variation of rainfall magnitude is plotted against the corresponding T on semi-log or log-log paper.
· The rainfall magnitude for any recurrence interval can be determined by extrapolating the plot between magnitude and recurrence interval.
· Empirical procedures can give good results for small extrapolations but the errors increased with the amount of extrapolation.
· For more accurate results, analytical methods using frequency factor are used.
Example
For a station A, the recorded annual 24 h maximum rainfall is given below.
Year |
Rainfall (cm) |
Year |
Rainfall (cm) |
Year |
Rainfall (cm) |
1950 |
13.0 |
1957 |
12.5 |
1964 |
8.5 |
1951 |
12.0 |
1958 |
11.2 |
1965 |
7.5 |
1952 |
7.6 |
1959 |
8.9 |
1966 |
6.0 |
1953 |
14.3 |
1960 |
8.9 |
1967 |
8.4 |
1954 |
16.0 |
1961 |
7.8 |
1968 |
10.8 |
1955 |
9.6 |
1962 |
9.0 |
1969 |
10.6 |
1956 |
8.0 |
1963 |
10.2 |
1970 |
8.3 |
|
|
|
|
1971 |
9.5 |
(a) Estimate the 24 h maximum rainfall with return periods of 13 and 50 years.
(b) What would be the probability of a rainfall of magnitude equal to or exceeding 10 cm occurring in 24 h at station A.
Solution
m |
Rainfall, cm |
P =m/n+1 |
T=1/P |
m |
Rainfall, cm |
P =m/n+1 |
T=1/P |
1 |
16 |
0.043 |
23.00 |
12 |
9 |
0.522 |
1.92 |
2 |
14.3 |
0.087 |
11.50 |
13 |
8.9 |
|
|
3 |
13 |
0.130 |
7.67 |
14 |
8.9 |
0.609 |
1.64 |
4 |
12.5 |
0.174 |
5.75 |
15 |
8.5 |
0.652 |
1.53 |
5 |
12 |
0.217 |
4.60 |
16 |
8.4 |
0.696 |
1.44 |
6 |
11.2 |
0.261 |
3.83 |
17 |
8.3 |
0.739 |
1.35 |
7 |
10.8 |
0.304 |
3.29 |
18 |
8 |
0.783 |
1.28 |
8 |
10.6 |
0.348 |
2.88 |
19 |
7.8 |
0.826 |
1.21 |
9 |
10.2 |
0.391 |
2.56 |
20 |
7.6 |
0.870 |
1.15 |
10 |
9.6 |
0.435 |
2.30 |
21 |
7.5 |
0.913 |
1.10 |
11 |
9.5 |
0.478 |
2.09 |
22 |
6 |
0.957 |
1.05 |
Rainfall Frequency Curve
(a) After interpolating and extrapolating the above graph, we can determine rainfall magnitude for 13 and 50 year return period respectively.
13 year RI = 14.55 cm
50 year RI = 18.00 cm
(b) For Rainfall = 10 cm, T =2.4 years and P = 0.417.
Intensity-duration-frequency (IDF) Relationship
In many studies related to watershed management, such as runoff disposal and erosion control, it is necessary to know the rainfall intensities of different durations and return periods.
The relationship between intensity (i, cm/hr), duration (d, hour) and return period (T, years) can be expressed as follows:
(10.1)
Where K, x, a and n are constants for a given catchment.
Intensity –Duration-Frequency Curve
Typical values of constants K,, x, a, and n for a few selected cities are given below:
Table – Values of constants in equation (29)
(Source: CSWCRTI- Dehradun)
City |
K |
x |
A |
n |
Bhopal |
6.93 |
0.189 |
0.50 |
0.878 |
Nagpur |
11.45 |
0.156 |
1.25 |
1.032 |
Chandigarh |
5.82 |
0.160 |
0.40 |
0.750 |
Bellary |
6.16 |
0.694 |
0.50 |
0.972 |
Raipur |
4.68 |
0.139 |
0.15 |
0.928 |
Example: Compute 10 year, 1 hour design rainfall intensity for Bhopal and Nagpur.
Solution:
For Bhopal
cm/hr
For Nagpur
cm/hr
Example
Perform the frequency analysis using different graphical methods for the following annual rainfall data. Estimate annual rainfall amount with 100 and 50 years return periods.
Year |
Annual rain (mm) |
Year |
Annual rain (mm) |
Year |
Annual rain (mm) |
1950 |
115 |
1959 |
71.4 |
1968 |
68.6 |
1951 |
96.5 |
1960 |
83 |
1969 |
67 |
1952 |
78 |
1961 |
96.5 |
1970 |
93 |
1953 |
89.5 |
1962 |
88.3 |
1971 |
108.8 |
1954 |
94.7 |
1963 |
70.6 |
1972 |
104.2 |
1955 |
73.3 |
1964 |
84.5 |
1973 |
89 |
1956 |
79.3 |
1965 |
92.7 |
1974 |
86 |
1957 |
87.1 |
1966 |
101.8 |
|
|
1958 |
124.8 |
1967 |
76.4 |
|
|
Solution
Year |
Annual rain (mm) |
Data in Descending Order |
Rank (m) |
PCa= (m/N) |
TCa= 1/Pca |
PH = (m-0.5)/N |
TH= 1/PH |
PW= m/ (N+1) |
TW= 1/PW |
California |
Hazen |
Weibull |
|||||||
1950 |
115 |
124.8 |
1 |
0.04 |
25.00 |
0.02 |
50.00 |
0.038 |
26.00 |
1951 |
96.5 |
115 |
2 |
0.08 |
12.50 |
0.06 |
16.67 |
0.077 |
13.00 |
1952 |
78 |
108.8 |
3 |
0.12 |
8.33 |
0.1 |
10.00 |
0.115 |
8.67 |
1953 |
89.5 |
104.2 |
4 |
0.16 |
6.25 |
0.14 |
7.14 |
0.154 |
6.50 |
1954 |
94.7 |
101.8 |
5 |
0.2 |
5.00 |
0.18 |
5.56 |
0.192 |
5.20 |
1955 |
73.3 |
96.5 |
6 |
0.24 |
4.17 |
0.22 |
4.55 |
0.231 |
4.33 |
1956 |
79.3 |
96.5 |
7 |
0.28 |
3.57 |
0.26 |
3.85 |
0.269 |
3.71 |
1957 |
87.1 |
94.7 |
8 |
0.32 |
3.13 |
0.3 |
3.33 |
0.308 |
3.25 |
1958 |
124.8 |
93 |
9 |
0.36 |
2.78 |
0.34 |
2.94 |
0.346 |
2.89 |
1959 |
71.4 |
92.7 |
10 |
0.4 |
2.50 |
0.38 |
2.63 |
0.385 |
2.60 |
1960 |
83 |
89.5 |
11 |
0.44 |
2.27 |
0.42 |
2.38 |
0.423 |
2.36 |
1961 |
96.5 |
89 |
12 |
0.48 |
2.08 |
0.46 |
2.17 |
0.462 |
2.17 |
1962 |
88.3 |
88.3 |
13 |
0.52 |
1.92 |
0.5 |
2.00 |
0.500 |
2.00 |
1963 |
70.6 |
87.1 |
14 |
0.56 |
1.79 |
0.54 |
1.85 |
0.538 |
1.86 |
1964 |
84.5 |
86 |
15 |
0.6 |
1.67 |
0.58 |
1.72 |
0.577 |
1.73 |
1965 |
92.7 |
84.5 |
16 |
0.64 |
1.56 |
0.62 |
1.61 |
0.615 |
1.63 |
1966 |
101.8 |
83 |
17 |
0.68 |
1.47 |
0.66 |
1.52 |
0.654 |
1.53 |
1967 |
76.4 |
79.3 |
18 |
0.72 |
1.39 |
0.7 |
1.43 |
0.692 |
1.44 |
1968 |
68.6 |
78 |
19 |
0.76 |
1.32 |
0.74 |
1.35 |
0.731 |
1.37 |
1969 |
67 |
76.4 |
20 |
0.8 |
1.25 |
0.78 |
1.28 |
0.769 |
1.30 |
1970 |
93 |
73.3 |
21 |
0.84 |
1.19 |
0.82 |
1.22 |
0.808 |
1.24 |
1971 |
108.8 |
71.4 |
22 |
0.88 |
1.14 |
0.86 |
1.16 |
0.846 |
1.18 |
1972 |
104.2 |
70.6 |
23 |
0.92 |
1.09 |
0.9 |
1.11 |
0.885 |
1.13 |
1973 |
89 |
68.6 |
24 |
0.96 |
1.04 |
0.94 |
1.06 |
0.923 |
1.08 |
1974 |
86 |
67 |
25 |
1 |
1.00 |
0.98 |
1.02 |
0.962 |
1.04 |
Year |
Annual rain (mm) |
Data in Descending Order |
Rank (m) |
PCh= (m-0.3)/(N+0.4) |
TCh= 1/PCh |
PB= (m-0.44)/(N+0.12) |
TB= 1/PB |
PG= (m-3/8)/(N+1/4) |
TG= 1/PG |
Chegodayev |
Blom |
Gringorten |
|||||||
1950 |
115 |
124.8 |
1 |
0.03 |
36.29 |
0.02 |
44.86 |
0.02 |
40.40 |
1951 |
96.5 |
115 |
2 |
0.07 |
14.94 |
0.06 |
16.10 |
0.06 |
15.54 |
1952 |
78 |
108.8 |
3 |
0.11 |
9.41 |
0.10 |
9.81 |
0.10 |
9.62 |
1953 |
89.5 |
104.2 |
4 |
0.15 |
6.86 |
0.14 |
7.06 |
0.14 |
6.97 |
1954 |
94.7 |
101.8 |
5 |
0.19 |
5.40 |
0.18 |
5.51 |
0.18 |
5.46 |
1955 |
73.3 |
96.5 |
6 |
0.22 |
4.46 |
0.22 |
4.52 |
0.22 |
4.49 |
1956 |
79.3 |
96.5 |
7 |
0.26 |
3.79 |
0.26 |
3.83 |
0.26 |
3.81 |
1957 |
87.1 |
94.7 |
8 |
0.30 |
3.30 |
0.30 |
3.32 |
0.30 |
3.31 |
1958 |
124.8 |
93 |
9 |
0.34 |
2.92 |
0.34 |
2.93 |
0.34 |
2.93 |
1959 |
71.4 |
92.7 |
10 |
0.38 |
2.62 |
0.38 |
2.63 |
0.38 |
2.62 |
1960 |
83 |
89.5 |
11 |
0.42 |
2.37 |
0.42 |
2.38 |
0.42 |
2.38 |
1961 |
96.5 |
89 |
12 |
0.46 |
2.17 |
0.46 |
2.17 |
0.46 |
2.17 |
1962 |
88.3 |
88.3 |
13 |
0.50 |
2.00 |
0.50 |
2.00 |
0.50 |
2.00 |
1963 |
70.6 |
87.1 |
14 |
0.54 |
1.85 |
0.54 |
1.85 |
0.54 |
1.85 |
1964 |
84.5 |
86 |
15 |
0.58 |
1.73 |
0.58 |
1.73 |
0.58 |
1.73 |
1965 |
92.7 |
84.5 |
16 |
0.62 |
1.62 |
0.62 |
1.61 |
0.62 |
1.62 |
1966 |
101.8 |
83 |
17 |
0.66 |
1.52 |
0.66 |
1.52 |
0.66 |
1.52 |
1967 |
76.4 |
79.3 |
18 |
0.70 |
1.44 |
0.70 |
1.43 |
0.70 |
1.43 |
1968 |
68.6 |
78 |
19 |
0.74 |
1.36 |
0.74 |
1.35 |
0.74 |
1.36 |
1969 |
67 |
76.4 |
20 |
0.78 |
1.29 |
0.78 |
1.28 |
0.78 |
1.29 |
1970 |
93 |
73.3 |
21 |
0.81 |
1.23 |
0.82 |
1.22 |
0.82 |
1.22 |
1971 |
108.8 |
71.4 |
22 |
0.85 |
1.17 |
0.86 |
1.17 |
0.86 |
1.17 |
1972 |
104.2 |
70.6 |
23 |
0.89 |
1.12 |
0.90 |
1.11 |
0.90 |
1.12 |
1973 |
89 |
68.6 |
24 |
0.93 |
1.07 |
0.94 |
1.07 |
0.94 |
1.07 |
1974 |
86 |
67 |
25 |
0.97 |
1.03 |
0.98 |
1.02 |
0.98 |
1.03 |
Example
Develop intensity-duration-frequency curve for given data
5 min |
15 min |
60 min |
120 min |
||||
Year |
Rainfall |
Year |
Rainfall |
Year |
Rainfall |
Year |
Rainfall |
|
mm |
|
mm |
|
mm |
|
mm |
1908 |
0.79 |
1910 |
1.34 |
1916 |
2.09 |
1917 |
2.91 |
1910 |
0.71 |
1914 |
1.13 |
1914 |
1.87 |
1914 |
2.58 |
1918 |
0.67 |
1916 |
1.05 |
1910 |
1.64 |
1911 |
2.28 |
1914 |
0.66 |
1918 |
0.97 |
1915 |
1.39 |
1908 |
2.06 |
1916 |
0.6 |
1909 |
0.91 |
1908 |
1.34 |
1916 |
1.77 |
1912 |
0.56 |
1913 |
0.86 |
1912 |
1.27 |
1913 |
1.58 |
1917 |
0.45 |
1915 |
0.84 |
1918 |
1.19 |
1910 |
1.49 |
1915 |
0.39 |
1917 |
0.76 |
1917 |
1.14 |
1909 |
1.45 |
1913 |
0.3 |
1911 |
0.61 |
1909 |
1.08 |
1912 |
1.4 |
1911 |
0.22 |
1912 |
0.56 |
1911 |
1.05 |
1915 |
1.35 |
1909 |
0.15 |
1908 |
0.46 |
1913 |
1.03 |
1918 |
1.28 |
Solution
5 min |
15 min |
60 min |
120 min |
||||
Year |
Rainfall Intensity |
Year |
Rainfall Intensity |
Year |
Rainfall Intensity |
Year |
Rainfall Intensity |
cm/h |
cm/h |
cm/h |
cm/h |
||||
1908 |
0.948 |
1908 |
0.536 |
1908 |
0.209 |
1915 |
0.1455 |
1921 |
0.852 |
1915 |
0.452 |
1904 |
0.187 |
1908 |
0.129 |
1915 |
0.804 |
1904 |
0.42 |
1915 |
0.164 |
1904 |
0.114 |
1934 |
0.792 |
1921 |
0.388 |
1926 |
0.139 |
1921 |
0.103 |
1929 |
0.72 |
1926 |
0.364 |
1921 |
0.134 |
1926 |
0.0885 |
1926 |
0.672 |
1934 |
0.344 |
1914 |
0.127 |
1917 |
0.079 |
1931 |
0.54 |
1929 |
0.336 |
1931 |
0.119 |
1914 |
0.0745 |
1904 |
0.468 |
1931 |
0.304 |
1934 |
0.114 |
1931 |
0.0725 |
1917 |
0.36 |
1911 |
0.244 |
1929 |
0.108 |
1934 |
0.07 |
1914 |
0.264 |
1917 |
0.224 |
1911 |
0.105 |
1929 |
0.0675 |
1911 |
0.18 |
1914 |
0.184 |
1917 |
0.103 |
1911 |
0.064 |
For 5 min duration |
|||||
Year |
Rainfall |
Rainfall Intensity |
Rank |
P= (m/(n+1)) |
T= (1/P) |
|
mm |
cm/h |
|
|
|
1908 |
0.79 |
0.948 |
1 |
0.0833 |
12.00 |
1921 |
0.71 |
0.852 |
2 |
0.1667 |
6.00 |
1915 |
0.67 |
0.804 |
3 |
0.2500 |
4.00 |
1934 |
0.66 |
0.792 |
4 |
0.3333 |
3.00 |
1929 |
0.6 |
0.72 |
5 |
0.4167 |
2.40 |
1926 |
0.56 |
0.672 |
6 |
0.5000 |
2.00 |
1931 |
0.45 |
0.54 |
7 |
0.5833 |
1.71 |
1904 |
0.39 |
0.468 |
8 |
0.6667 |
1.50 |
1917 |
0.3 |
0.36 |
9 |
0.7500 |
1.33 |
1914 |
0.22 |
0.264 |
10 |
0.8333 |
1.20 |
1911 |
0.15 |
0.18 |
11 |
0.9167 |
1.09 |
For 15 min duration |
|||||
Year |
Rainfall |
Rainfall Intensity |
Rank |
P= (m/(n+1)) |
T= (1/P) |
mm |
cm/h |
||||
1908 |
1.34 |
0.536 |
1 |
0.0833 |
12.00 |
1921 |
1.13 |
0.452 |
2 |
0.1667 |
6.00 |
1915 |
1.05 |
0.42 |
3 |
0.2500 |
4.00 |
1934 |
0.97 |
0.388 |
4 |
0.3333 |
3.00 |
1929 |
0.91 |
0.364 |
5 |
0.4167 |
2.40 |
1926 |
0.86 |
0.344 |
6 |
0.5000 |
2.00 |
1931 |
0.84 |
0.336 |
7 |
0.5833 |
1.71 |
1904 |
0.76 |
0.304 |
8 |
0.6667 |
1.50 |
1917 |
0.61 |
0.244 |
9 |
0.7500 |
1.33 |
1914 |
0.56 |
0.224 |
10 |
0.8333 |
1.20 |
1911 |
0.46 |
0.184 |
11 |
0.9167 |
1.09 |
For 60 min duration |
|||||
Year |
Rainfall |
Rainfall Intensity |
Rank |
P= (m/(n+1)) |
T= (1/P) |
mm |
cm/h |
||||
1908 |
2.91 |
0.209 |
1 |
0.0833 |
12.00 |
1921 |
2.58 |
0.187 |
2 |
0.1667 |
6.00 |
1915 |
2.28 |
0.164 |
3 |
0.2500 |
4.00 |
1934 |
2.06 |
0.139 |
4 |
0.3333 |
3.00 |
1929 |
1.77 |
0.134 |
5 |
0.4167 |
2.40 |
1926 |
1.58 |
0.127 |
6 |
0.5000 |
2.00 |
1931 |
1.49 |
0.119 |
7 |
0.5833 |
1.71 |
1904 |
1.45 |
0.114 |
8 |
0.6667 |
1.50 |
1917 |
1.4 |
0.108 |
9 |
0.7500 |
1.33 |
1914 |
1.35 |
0.105 |
10 |
0.8333 |
1.20 |
1911 |
1.28 |
0.103 |
11 |
0.9167 |
1.09 |
For 120 min duration |
|||||
Year |
Rainfall |
Rainfall Intensity |
Rank |
P= (m/(n+1)) |
T= (1/P) |
mm |
cm/h |
||||
1908 |
3.06 |
0.1455 |
1 |
0.0833 |
12.00 |
1921 |
2.73 |
0.129 |
2 |
0.1667 |
6.00 |
1915 |
2.43 |
0.114 |
3 |
0.2500 |
4.00 |
1934 |
2.21 |
0.103 |
4 |
0.3333 |
3.00 |
1929 |
1.92 |
0.0885 |
5 |
0.4167 |
2.40 |
1926 |
1.73 |
0.079 |
6 |
0.5000 |
2.00 |
1931 |
1.64 |
0.0745 |
7 |
0.5833 |
1.71 |
1904 |
1.6 |
0.0725 |
8 |
0.6667 |
1.50 |
1917 |
1.55 |
0.07 |
9 |
0.7500 |
1.33 |
1914 |
1.5 |
0.0675 |
10 |
0.8333 |
1.20 |
1911 |
1.43 |
0.064 |
11 |
0.9167 |
1.09 |
Recurrence Interval |
Rainfall Intensity (cm/h) |
|||
T= (1/P), Year |
5 |
15 |
60 |
120 |
min |
min |
min |
min |
|
1.090909091 |
0.18 |
0.184 |
0.103 |
0.064 |
1.2 |
0.264 |
0.224 |
0.105 |
0.0675 |
1.333333333 |
0.36 |
0.244 |
0.108 |
0.07 |
1.5 |
0.468 |
0.304 |
0.114 |
0.0725 |
1.714285714 |
0.54 |
0.336 |
0.119 |
0.0745 |
2 |
0.672 |
0.344 |
0.127 |
0.079 |
2.4 |
0.72 |
0.364 |
0.134 |
0.0885 |
3 |
0.792 |
0.388 |
0.139 |
0.103 |
4 |
0.804 |
0.42 |
0.164 |
0.114 |
6 |
0.852 |
0.452 |
0.187 |
0.129 |
12 |
0.948 |
0.536 |
0.209 |
0.1455 |