Autopilot Systems
An aircraft automatic pilot system controls the aircraft without the pilot directly maneuvering the controls. The autopilot maintains the aircraft’s attitude and/or direction and returns the aircraft to that condition when it is displaced from it. Automatic pilot systems are capable of keeping aircraft stabilized laterally, vertically, and longitudinally.
The primary purpose of an autopilot system is to reduce the work strain and fatigue of controlling the aircraft during long flights. Most autopilots have both manual and automatic modes of operation. In the manual mode, the pilot selects each maneuver and makes small inputs into an autopilot controller. The autopilot system moves the control surfaces of the aircraft to perform the maneuver. In automatic mode, the pilot selects the attitude and direction desired for a flight segment. The autopilot then moves the control surfaces to attain and maintain these parameters.
Autopilot systems provide for one-, two-, or three-axis control of an aircraft. Those that manage the aircraft around only one axis control the ailerons. They are single-axis autopilots, known as wing leveler systems, usually found on light aircraft. [Figure below] Other autopilots are two-axis systems that control the ailerons and elevators. Three-axis autopilots control the ailerons, elevators, and the rudder. Two-and threeaxis autopilot systems can be found on aircraft of all sizes.
The wing leveler system on a small aircraft is a vacuum-operated single-axis autopilot. Only the ailerons are controlled. The aircraft’s turn coordinator is the sensing element. Vacuum from the instrument vacuum system is metered to the diaphragm cable actuators to move the ailerons when the turn coordinator senses roll
There are many autopilot systems available. They feature a wide range of capabilities and complexity. Light aircraft typically have autopilots with fewer capabilities than highperformance and transport category aircraft. Integration of navigation functions is common, even on light aircraft autopilots. As autopilots increase in complexity, they not only manipulate the flight control surfaces, but other flight parameters as well.
Some modern small aircraft, high-performance, and transport category aircraft have very elaborate autopilot systems known as automatic flight control systems (AFCS). These three-axis systems go far beyond steering the airplane. They control the aircraft during climbs, descents, cruise, and approach to landing. Some even integrate an auto-throttle function that automatically controls engine thrust that makes autolandings possible.
For further automatic control, flight management systems have been developed. Through the use of computers, an entire flight profile can be programmed ahead of time allowing the pilot to supervise its execution. An FMS computer coordinates nearly every aspect of a flight, including the autopilot and auto throttle systems, navigation route selection, fuel management schemes, and more.
Basis for Autopilot Operation
The basis for autopilot system operation is error correction. When an aircraft fails to meet the conditions selected, an error is said to have occurred. The autopilot system automatically corrects that error and restores the aircraft to the flight attitude desired by the pilot. There are two basic ways modern autopilot systems do this. One is position based and the other is rate based. A position based autopilot manipulates the aircraft’s controls so that any deviation from the desired attitude of the aircraft is corrected. This is done by memorizing the desired aircraft attitude and moving the control surfaces so that the aircraft returns to that attitude. Rate based autopilots use information about the rate of movement of the aircraft, and move control surfaces to counter the rate of change that causes the error. Most large aircraft use rate-based autopilot systems. Small aircraft may use either.
Autopilot Components
Most autopilot systems consist of four basic components, plus various switches and auxiliary units. The four basic components are: sensing elements, computing element, output elements, and command elements. Many advanced autopilot systems contain a fifth element: feedback or follow-up. This refers to signals sent as corrections are being made by the output elements to advise the autopilot of the progress being made.
Sensing Elements
The attitude and directional gyros, the turn coordinator, and an altitude control are the autopilot sensing elements. These units sense the movements of the aircraft. They generate electric signals that are used by the autopilot to automatically take the required corrective action needed to keep the aircraft flying as intended. The sensing gyros can be located in the cockpit mounted instruments. They can also be remotely mounted. Remote gyro sensors drive the servo displays in the cockpit panel, as well as provide the input signals to the autopilot computer.
Modern digital autopilots may use a variety of different sensors. MEMS gyros may be used or accompanied by the use solid state accelerometers and magnetometers. Rate based systems may not use gyros at all. Various input sensors may be located within the same unit or in separate units that transfer information via digital data bus. Navigation information is also integrated via digital data bus connection to avionics computers.
Computer and Amplifier
The computing element of an autopilot may be analog or digital. Its function is to interpret the sensing element data, integrate commands and navigational input, and send signals to the output elements to move the flight controls as required to control the aircraft. An amplifier is used to strengthen the signal for processing, if needed, and for use by the output devices, such as servo motors. The amplifier and associated circuitry is the computer of an analog autopilot system. Information is handled in channels corresponding to the axis of control for which the signals are intended (i.e., pitch channel, roll channel, or yaw channel). Digital systems use solid state microprocessor computer technology and typically only amplify signals sent to the output elements.
Output Elements
The output elements of an autopilot system are the servos that cause actuation of the flight control surfaces. They are independent devices for each of the control channels that