Engine-Driven Vacuum Pump

The vane-type engine-driven pump is the most common source of vacuum for gyros installed in general aviation, light aircraft. One type of engine-driven pump is geared to the engine and is connected to the lubricating system to seal, cool, and lubricate the pump. Another commonly used pump is a dry vacuum pump. It operates without external lubrication and installation requires no connection to the engine oil supply. It also does not need the air oil separator or gate check valve found in wet pump systems. In many other respects, the dry pump system and oil lubricated system are the same.

Cutaway view of a vane-type engine-driven vacuum pump used to power gyroscopic instruments.

When a vacuum pump develops a vacuum (negative pressure), it also creates a positive pressure at the outlet of the pump. This pressure is compressed air. Sometimes, it is utilized to operate pressure gyro instruments. The components for pressure systems are much the same as those for a vacuum system as listed below. Other times, the pressure developed by the vacuum pump is used to inflate de-ice boots or inflatable seals or it is vented overboard.

An advantage of engine-driven pumps is their consistent performance on the ground and in flight. Even at low engine rpm, they can produce more than enough vacuum so that a regulator in the system is needed to continuously provide the correct suction to the vacuum instruments. As long as the engine operates, the relatively simple vacuum system adequately spins the instrument gyros for accurate indications. However, engine failure, especially on singleengine aircraft, could leave the pilot without attitude and directional information at a critical time. To thwart this shortcoming, often the turn and bank indicator operates with an electrically driven gyro that can be driven by the battery for a short time. Thus, when combined with the aircraft’s magnetic compass, sufficient attitude and directional information is still available.

Multiengine aircraft typically contain independent vacuum systems for the pilot and copilot instruments driven by separate vacuum pumps on each of the engines. Should an engine fail, the vacuum system driven by the still operating engine supplies a full complement of gyro instruments. An interconnect valve may also be installed to connect the failed instruments to the still operational pump.