Vacuum Systems

Vacuum systems are very common for driving gyro instruments. In a vacuum system, a stream of air directed against the rotor vanes turns the rotor at high speed. The action is similar to a water wheel. Air at atmospheric pressure is first drawn through a filter(s). It is then routed into the instrument and directed at vanes on the gyro rotor. A suction line leads from the instrument case to the vacuum source. From there, the air is vented overboard. Either a venturi or a vacuum pump can be used to provide the vacuum required to spin the rotors of the gyro instruments.

The vacuum value required for instrument operation is usually between 3½ inches to 4½ inches of mercury. It is usually adjusted by a vacuum relief valve located in the supply line. Some turn-and-bank indicators require a lower vacuum setting. This can be obtained through the use of an additional regulating valve in the turn and bank vacuum supply line.

Venturi Tube Systems

The velocity of the air rushing through a venturi can create sufficient suction to spin instrument gyros. A line is run from the gyro instruments to the throat of the venturi mounted on the outside of the airframe. The low pressure in the venturi tube pulls air through the instruments, spins the gyros, and expels the air overboard through the venturi. This source of gyro power is used on many simple, early aircraft.

A light, single-engine aircraft can be equipped with a 2-inch venturi (2 inches of mercury vacuum capacity) to operate the turn and bank indicator. It can also have a larger 8-inch venturi to power the attitude and heading indicators. Simplified illustrations of these venturi vacuum systems are shown in Figure Below. Normally, air going into the instruments is filtered.

The advantages of a venturi as a suction source are its relatively low cost and its simplicity of installation and operation. It also requires no electric power. But there are serious limitations. A venturi is designed to produce the desired vacuum at approximately 100 mph at standard sea level conditions. Wide variations in airspeed or air density cause the suction developed to fluctuate. Airflow can also be hampered by ice that can form on the venturi tube. Additionally, since the rotor does not reach normal operating speed until after takeoff, preflight operational checks of venturi powered gyro instruments cannot be made. For these reasons, alternate sources of vacuum power were developed.