Remote Indicating Compass
Magnetic deviation is compensated for by swinging the compass and adjusting compensating magnets in the instrument housing. A better solution to deviation is to remotely locate the magnetic compass in a wing tip or vertical stabilizer where there is very little interference with the earth’s magnetic field. By using a synchro remote indicating system, the magnetic compass float assembly can act as the rotor of the synchro system. As the float mechanism rotates to align with magnetic north in the remotely located compass, a varied electric current can be produced in the transmitter. This alters the magnetic field produced by the coils of the indicator in the cockpit, and a magnetic indication relatively free from deviation is displayed. Many of these systems are of the magnesyn type.
Remote Indicating Slaved Gyro Compass (Flux Gate Compass)
An elaborate and very accurate method of direction indication has been developed that combines the use of a gyro, a magnetic compass, and a remote indicating system. It is called the slaved gyro compass or flux gate compass system. A study of the gyroscopic instruments section of this chapter assists in understanding this device.
A gyroscopic direction indicator is augmented by magnetic direction information from a remotely located compass. The type of compass used is called a flux valve or flux gate compass. It consists of a very magnetically permeable circular segmented core frame or spider. The earth’s magnetic field flows through this iron core and varies its distribution through segments of the core as the flux valve is rotated via the movement of the aircraft. Pickup coil windings are located on each of the core’s spider legs that are positioned 120° apart.
The distribution of earth’s magnetic field flowing through the legs is unique for every directional orientation of the aircraft. A coil is placed in the center of the core and is energized by AC current. As the AC flow passes through zero while changing direction, the earth’s magnetic field is allowed to flow through the core. Then, it is blocked or gated as the magnetic field of the core current flow builds to its peak again. The cycle is repeated at the frequency of the AC supplied to the excitation coil. The result is repeated flow and nonflow of the earth’s flux across the pickup coils. During each cycle, a unique voltage is induced in each of the pickup coils reflecting the orientation of the aircraft in the earth’s magnetic field.
The electricity that flows from each of the pickup coils is transmitted out of the flux valve via wires into a second unit. It contains an autosyn transmitter, directional gyro, an amplifier, and a triple wound stator that is similar to that found in the indicator of a synchro system. Unique voltage is induced in the center rotor of this stator which reflects the voltage received from the flux valve pickup coils sent through the stator coils. It is amplified and used to augment the position of the DG. The gyro is wired to be the rotor of an autosyn synchro system, which transmits the position of the gyro into an indicator unit located in the cockpit. In the indicator, a vertical compass card is rotated against a small airplane type lubber line like that in a vertical magnetic compass.
A simplified schematic of a flux gate, or slaved gyro, compass system.