Remote Indicating Fuel and Oil Pressure Gauges
Fuel and oil pressure indications can be conveniently obtained through the use of synchro systems. As stated previously, running fuel and oil lines into the cabin to direct reading gauges is not desirable. Increased risk of fire in the cabin and the additional weight of the lines are two primary deterrents.
By locating the transmitter of a synchro system remotely, fluid pressure can be directed into it without a long tubing run. Inside the transmitter, the motion of a pressure bellows can be geared to the transmitter rotor in such a way as to make the rotor turn. As in all synchros, the transmitter rotor turns proportional to the pressure sensed, which varies the voltages set up in the resistor windings of the synchro stator. These voltages are transmitted to the indicator coils that develop the magnetic field that positions the pointer.
Remote pressure sensing indicators change linear motion to rotary motion in the sensing mechanism part of the synchro transmitter.
Often on twin-engine aircraft, synchro mechanisms for each engine can be used to drive separate pointers on the same indicator. By placing the coils one behind the other, the pointer shaft from the rear indicator motor can be sent through the hollow shaft of the forward indicator motor. Thus, each pointer responds with the magnet’s alignment in its own motor’s magnetic field while sharing the same gauge housing. Labeling the pointer’s engine 1 or 2 removes any doubt about which indicator pointer is being observed. A similar principle is employed in an indicator that has side-by-side indications for different parameters, such as oil pressure and fuel pressure in the same indicator housing. Each parameter has its own synchro motor for positioning its pointer.
Aircraft with digital instrumentation make use of pressuresensitive solid-state sensors that output digital signals for collection and processing by dedicated engine and airframe computers. Others may retain their analog sensors, but may forward this information through an analog to digital converter unit from which the appropriate computer can obtain digital information to process and illuminate the digital display. Many more instruments utilize the synchro remote-indicating systems described in this section or similar synchros. Sometimes simple, more suitable, or less expensive technologies are also employed.