AC Synchro Systems
Aircraft with alternating current (AC) electrical power systems make use of autosyn or magnasysn synchro remote indicating systems. Both operate in a similar way to the DC selsyn system, except that AC power is used. Thus, they make use of electric induction, rather than resistance current flows defined by the rotor brushes. Magnasyn systems use permanent magnet rotors such a those found in the DC selsyn system. Usually, the transmitter magnet is larger than the indicator magnet, but the electromagnetic response of the indicator rotor magnet and pointer remains the same. It aligns with the magnetic field set up by the coils, adopting the same angle of deflection as the transmitter rotor.
A magnasysn synchro remote-indicating system uses AC. It has permanent magnet rotors in the transmitter and indictor.
Autosyn systems are further distinguished by the fact that the transmitter and indicator rotors used are electro-magnets rather than permanent magnets. Nonetheless, like a permanent magnet, an electro-magnet aligns with the direction of the magnetic field created by current flowing through the stator coils in the indicator. Thus, the indicator pointer position mirrors the transmitter rotor position.
An autosyn remote-indicating system utilizes the interaction between magnetic fields set up by electric current flow to position the indicator pointer.
AC synchro systems are wired differently than DC systems. The varying current flows through the transmitter and indicator stator coils are induced as the AC cycles through zero and the rotor magnetic field flux is allowed to flow. The important characteristic of all synchro systems is maintained by both the autosyn and magnasyn systems. That is, the position of the transmitter rotor is mirrored by the rotor in the indicator. These systems are used in many of the same applications as the DC systems and more. Since they are usually part of instrumentation for high performance aircraft, adaptations of autosyn and magnasyn synchro systems are frequently used in directional indicators and in autopilot systems.