Operating Conditions of a Multi-Stage Compressor

Each stage of a multi-stage compressor possesses certain airflow characteristics that are dissimilar from those of its neighbour; thus to design a workable and efficient compressor, the characteristics of each stage must be carefully matched. This is a relatively simple process to implement for one set of conditions (design mass flow, pressure ratio and rotational speed), but is much more difficult when reasonable matching is to be retained with the compressor operating over a wide range of conditions such as an aircraft engine encounter.

If the operating conditions imposed upon the compressor blade departs too far from the design intention, breakdown of airflow and/or aerodynamically induced vibration will occur. These phenomena may take one of two forms; the blades may stall because the angle of incidence of the air relative to the blade is too high (positive incidence stall) or too low (negative incidence stall). The former is a front stage problem at low speeds and the latter usually affects the rear stages at high speed, either can lead to blade vibration which can induce rapid destruction. If the engine demands a pressure rise from the compressor, which is higher than the blading can sustain, 'surge' occurs. In this case there is an instantaneous breakdown of flow through the machine and the high pressure air in the combustion system is expelled forward through the compressor with a loud 'bang' and a resultant loss of engine thrust.

Compressors are designed with adequate margin to ensure that this area of instability (fig. 3-14) is avoided.