SPECIFIC ACTION OF STRESSES

You need to understand the stresses encountered on the main parts of an aircraft. A knowledge of the basic stresses on aircraft structures will help you understand why aircraft are built the way they are. The fuselage of an aircraft is subject the fives types of stress—torsion, bending, tension, shear, and compression. Torsional stress in a fuselage is created in several ways. For example, torsional stress is encountered in engine torque on turboprop aircraft. Engine torque tends to rotate the aircraft in the direction opposite to the direction the propeller is turning. This force creates a torsional stress in the fuselage. Figure 4-2 shows the effect of the rotating propellers. Also, torsional stress on the fuselage is created by the action of the ailerons when the aircraft is maneuvered. When an aircraft is on the ground, there is a bending force on the fuselage. This force occurs because of the weight of the aircraft. Bending increases when the aircraft makes a carrier landing. This bending action creates a tension stress on the lower skin of the fuselage and a compression stress on the top skin. Bending action is shown in figure 4-3. These stresses are transmitted to the fuselage when the aircraft is in flight. Bending occurs because of the reaction of the airflow against the wings and empennage. When the aircraft is in flight, lift forces act upward against the wings, tending to bend them upward. The wings are prevented from folding over the fuselage by the resisting strength of the wing structure. The bending action creates a tension stress on the bottom of the wings and a compression stress on the top of the wings.